Значение генной и клеточной инженерии. Генетическая и клеточная инженерия


Лекция №5

Тема: Биотехнология и генетическая инженерия.
Вопросы: 1. Понятие о биотехнологии

2. Генная инженерия и ее методы.


1. Понятие о биотехнологии

Современная биотехнология занимает ведущее положение в системе биологических, медицинских, ветеринарных и зоотехнических исследований, представляет собой новую форму промышленной технологии, основу которой составляют биологические объекты – животные, растения и микроорганизмы.

Основная цель и задачи биотехнологии направлены на разработку методов и приемов, позволяющих получать биологически активные соединения (ферменты, гормоны, вакцины), а также конструировать молекулы новых веществ и создавать новые формы организмов, отсутствующие в природе (химерные молекулы, животные).

В животноводстве широко используют различные биотехнологические методы (генная и клеточная инженерия), с помощью которых можно ускорить селекционный процесс по созданию новых высокопродуктивных пород с.-х. животных.

В биотехнологии пользуются двумя терминами, различающимися смысловым содержанием: «Генная инженерия» - как прием изучения и воздействия на процессы, проходящие на уровне молекул и генов, и термин «Генетическая инженерия» - как комплекс методов, проводимых в более широком плане на клетках и организме в целом.

В принципе оба термина являются синонимами и подразумевают методы, обеспечивающие переделку и реконструкцию генетического материала, т.е. формирование новой наследственности.

Использование достижений генной инженерии идет в основном в следующих направлениях:


  • изучение организации генетического аппарата высших организмов;

  • использование микроорганизмов как продуцентов хозяйственно полезных веществ;

  • конструирование новых организмов путем пересадки чужеродных генов, т.е. получение трансгенных животных.
Клеточная инженерия (инженерия половых и соматических клеток) успешно применяется при трансплантации эмбрионов. Основные направления трансплантации эмбрионов в области животноводства следующие:

  • повышение эффективности и ускорение селекционного процесса;

  • повышение коэффициента размножаемости самок;

  • сохранение ценных, малых популяций генофонда исчезающих пород;

  • получение потомков от бесплодных, но генетически ценных животных;

  • повышение устойчивости животных к заболеваниям;

  • получение монозиготных близнецов одного определенного пола;

  • получение химер, развивающихся из эмбрионов 5-6 дневного возраста разных животных (пород, видов) и объединенных в одно целое;

  • повышение плодовитости коров путем пересадки половин эмбриона в оба рога матки.
Возникновение, становление и развитие биотехнологии

Исторически биотехнология возникла на основе традиционных микробиологических (большей частью бродильных) производств. Многие подобные «технологии» неосознанно применялись еще в древности при получении вина, пива, хлеба, кисломолочных и квашенных продуктов.

С помощью биотехнологии в настоящее время получают десятки дорогостоящих биологически активных веществ, среди них гормоны, ферменты, витамины, антибиотики, некоторые лекарства, такие как инсулин, интерферон и другие.

Для справки: инсулин – белок регулирующий содержание сахара в крови; интерферон – белок защищающий еще непораженные клетки от вирусов (гриппа).

Однако, до появления методов генной инженерии интерферон мог быть получен лишь в ничтожных количествах из лейкоцитов (белых кровяных клеток).

Для получения 1 грамма интерферона нужно переработать кровь от 90 тыс. доноров.

Биотехнологические разработки интенсивно используются при создании безотходных процессов производства при переработке сырья, очистке воды от нефти, канализационных стоков, в борьбе с вредителями с.-х. культур, получения кормового и пищевого белка, биогаза и др.

Так, с помощью микробов из 1 тонны нефти получается около 1 тонны дрожжей, содержащих 600 кг белка.

И еще: при размножении 1 бактерия (при оптимальных условиях кормовых, среды и др. факторов) через 44 часа сумела бы образовать такое потомство, масса которого соответствовала массе нашей планеты (около 6 000 000 000 000 000 000 000 тонн).

Биотехнологическими приемами, еще 6000 лет тому назад пользовались народы Двуречья изготовляя пьянящий напиток, т.е. пиво тех времен.

Умели варить пиво и древние египтяне используя дрожжи, сахар и брожение. Римляне и греки используя виноградный сок получали вино.

На основании выше сказанного на вопрос, что такое биотехнология, мы можем ответить так, что это наука об использовании живых организмов и биологических процессов в производстве.

В связи с выше изложенным, историю возникновения и развития биотехнологии можно разделить на три этапа.

Первый этап – зарождение биотехнологии. Многие сотни лет человек, не имея научных представлений о микробиологии, биохимии и других науках, разработал и практически успешно использовал методы биотехнологии в хлебопечении, сыроделии, виноделии, изготовлении кисломолочных продуктов, т.е. древнейших отраслях хозяйственной деятельности.

Второй этап (XIX в.) – становление биотехнологии как науки. Начало бурного развития биотехнологических наук: генетики, микробиологии, биохимии, вирусологии, физиологии, эмбриологии и др.

Третий этап (середина 70-х годов XX в.) – развитие биотехнологии в различных направлениях с помощью методов генной и клеточной инженерии.

Первыми биотехнологическими приемами в животноводстве стали искусственное осеменение животных и силосование кормов.

Впервые в Росси в 1887 г. хирургическим путем В.И. Шведов трансплантировал дробящиеся оплодотворенные яйцеклетки – зиготы крысы.

История трансплантации эмбрионов крупного рогатого скота начинается с 1950 г., когда О. Уиллем (США) пересадил оплодотворенную яйцеклетку от одной телки другой и получил живого теленка.

Из европейских государств, которые стали использовать трансплантацию эмбрионов как метод, ускоряющий селекционный процесс и повышающий его эффективность, необходимо отметить Францию, Великобританию, Данию, Германию, Италию, Бельгию, Словакию.

Современный этап развития биотехнологии связан с открытием новых закономерностей в процессах жизнедеятельности организмов на молекулярном уровне.

Развитие биотехнологии привело к созданию промышленного производства по получению различных биопрепаратов для использования их в медицине, ветеринарии, пищевой промышленности.

С каждым годом увеличивается число технологий, методов и препаратов, предназначенных повысить продуктивность животных и качество продукции. В мире насчитывают более 450 биотехнологических компаний, производящих препараты для поддержания здоровья животных и повышения их продуктивности.

Направления биотехнологии

Одно из наиболее перспективных направлений – клонирование эмбрионов, т.е. получение максимального количества потомков от высокопродуктивных животных.

Для этого разработана методика создания идентичных (клонов) эмбрионов путем внесения ядра клетки эмбриона высококлассного животного в неоплодотворенную яйцеклетку с предварительно удаленным ядром, малоценным в племенном отношении ; разделение эмбрионов на два, четыре, шесть и восемь частей.

Одноклеточные «синтетические» эмбрионы научились выращивать до 8-, 16- и даже 32- клеточной стадии в лабораторных условиях. Поэтому их можно не только имплантировать коровам или замораживать с целью хранения, но и использовать для последующего клонирования. Таким образом, можно in vitro получать неограниченное количество эмбрионов, исключая процедуру их взятия у высокопродуктивных животных. Теоретически от одного эмбриона крупного рогатого скота можно иметь тысячи животных.

Другое достижение биотехнологических исследований в области животноводства, имеющее практическое значение, - метод получения трансгенных животных, в геном которых «встроен» чужеродный ген. С его помощью за короткий период можно получить быстрорастущих животных, с высокой молочной продуктивностью, устойчивостью к болезням и т.д.

Получение даже одного животного с унаследованным пересаженным геном считается большим достижением. Такое животное рассматривают как основу для создания новой линии.

Сегодня биотехнология используется при решении многих практических вопросов по повышению эффективности здравоохранения, увеличению продовольственных ресурсов страны и обеспечению различных производств сырьем, созданию и использованию рентабельных возобновляемых источников энергии и безотходных производств, сокращению вредных антропологических воздействий на окружающую природную среду и в других отраслях.

В настоящее время, в наиболее развитых странах созданы и продолжают создаваться предприятия, которые используя биотехнологию производят корма и кормовые добавки, продукты питания, медицинские препараты, проводят трансплантацию эмбрионов и решают другие хозяйственные задачи.

Полагают, что дальнейший прогресс человечества не только будет во многом зависеть от развития биотехнологии, но и просто не сможет без нее обойтись, так как нет пока других научно обоснованных предложений обеспечить прежде всего продуктами питания все возрастающее население Земли.

Наиболее перспективными направлениями в биотехнологии являются производства связанные с нетрадиционным получением на биофабриках, в необходимых количествах белка, незаменимых аминокислот, лекарственных препаратов, биогаза и преобразованием солнечной энергии.

2. Генная инженерия и ее методы

Современная генная инженерия пользуется комплексом разнообразных методов и технологий на уровне молекул, клеточных элементов (хромосом, ядра), соматических и половых клеток, на организме, находящемся на разных стадиях онтогенеза.

Процесс синтеза интерферона химическим способом из крови животных сложен и продолжителен. Поэтому использовали микроорганизмы (E. Coli), полученные методом генной инженерии, способные продуцировать интерфероны человека, которые активизируют процессы, влияющие на противовирусную устойчивость.

Методами генной инженерии в промышленных условиях были получены инсулин, гормон роста человека, интерферон. Находятся в разработке способы синтеза альбумина, разных вакцин, некоторых ферментов, гормона роста с.-х. животных.

На основе генной инженерии создается генотерапия, позволяющая исправлять наследственные дефекты путем введения в организм полноценных генов. Этим путем получены мыши-гиганты. В их геном «встроили» ген гормона роста.

3. Клеточная и эмбриональная инженерия.

Клеточная инженерия. Под клеточной инженерией понимают метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Одним из важных направлений клеточной инженерии является гибридизация соматических клеток.

Сущность ее заключается в соединении клеток с хромосомными наборами весьма далеких видов.

При соматической гибридизации используют способность клеток в культуре соединяться в одну и образовывать ядро, содержащее хромосомы разных геномов. Осуществляется это при помощи вируса Сендай.

В настоящее время получены гибридные культуры клеток десятков далеких видов (мышь х курица; мышь х обезьяна; кролик х обезьяна; соя х горох; соя х кукуруза и т.д.).

Оказалось возможным соединение в одной клетке и таких далеких форм, как курица х дрожжи и др.

Однако, межвидовая несовместимость остается законом и при соматической гибридизации.

Со временем в гибридной культуре происходит разделение на клетки того и другого вида, которые не содержат хромосомы второго вида.

Это обстоятельство оказалось крайне ценным для изучения локализации и характера действия тех или иных генов.

Эмбриональная инженерия. К этому направлению относится трансплантация эмбрионов. Биотехнология в воспроизводстве и селекции крупного рогатого скота имеет особое значение. Крупный рогатый скот относится к одноплодным видам млекопитающих. В лучшем случае, от каждой коровы получают одного теленка в год, в то время как в яичнике содержится сотни тысяч незрелых половых клеток – ооцитов, представляющих огромный генетический резерв.

Кардинальное решение проблемы ускоренного воспроизводства скота состоит в том, чтобы перейти к нетрадиционным способам увеличения плодовитости. В перспективе биотехнология рассматривается как основа ускоренного воспроизводства высокопродуктивных животных и целых популяций.

К методам биотехнологии, применяемым в практике воспроизводства, относят искусственное осеменение, глубокое замораживание и длительное хранение спермы быков, вызывание половой охоты и ее синхронизация, регулирование времени отелов.

В последнее время наряду с этими традиционными биотехническими методами приобрела практическое значение трансплантация эмбрионов, которая рассматривается как эффективный метод биотехнологии ускоренного размножения высокоценных племенных животных.

Трансплантация эмбрионов крупного рогатого скота – это новый биотехнический метод ускоренного воспроизводства высокопродуктивных животных, который значительно повышает роль маточного поголовья, представляет собой составную часть программы селекции и является одним из способов интенсификации использования генетического потенциала коров-рекордисток. Трансплантация эмбрионов эффективна только при использовании генетически ценных животных, проверенных по качеству потомства и признанных улучшателями.

Если учесть, что от одного донора можно получать эмбрионы 4-5 раз в год, то уже на современном этапе развития биотехники трансплантации очевидна реальная возможность ежегодного получения 20-25 телят от одной коровы рекордистки. Используя 20 коров-рекордисток в качестве доноров эмбрионов, в течение 2-3 лет можно создать высокопродуктивное молочное стадо в 200-300 коров. Традиционным способом от тех же 20 коров за этот период можно получить не более 30 телок и 30 бычков.

Коров, телок, которым пересаживают эмбрионы, принято называть реципиентами, а коров, от которых получают эмбрионы – донорами. Эффект от трансплантации в значительной мере определяется выбором коров. В качестве доноров используют лучших, а в качестве реципиентов – худших по селекционным признакам коров или телок.

Чем выше различия в качестве между донором и реципиентом, тем целесообразнее применение метода трансплантации, базирующегося на использовании в качестве доноров коров с рекордно высокой продуктивностью. Для осеменения коров-доноров используют семя лучших быков, оцененных по качеству потомства.

Наиболее важное значение метод трансплантации эмбрионов может иметь при выведении и отборе выдающихся по племенной ценности производителей, так как увеличивается возможность отбора бычков от матерей с рекордно высокой продуктивностью.

Получение бычков-трансплантантов от выдающихся родителей не снижает проблему их последующей оценки по качеству потомства, но значительно повышает вероятность отбора (за счет повышения селекционного дифференциала матерей) выдающихся улучшателей для использования в племенных заводах и в условиях крупномасштабной селекции.

Применение метода трансплантации эмбрионов ставит всю селекционную работу на новый интенсивный путь развития пород, обеспечивая повышение продуктивности за счет получения и широкого использования производителей с высокой комбинационной способностью.

Трансплантация эмбрионов развивается быстрыми темпами, а сам метод за рубежом используют в коммерческих целях. В США создано более 80 коммерческих центров по пересадке эмбрионов. В этой стране, где трансплантация эмбрионов поставлена на прочную технологическую основу, получают ежегодно более 100 тыс. телят. Аналогичные коммерческие организации по трансплантации эмбрионов созданы и в других развитых странах Западной Европы. В СССР разработки по трансплантации эмбрионов были начаты в середине 70-х годов.

Цель трансплантации состоит в следующем:

Создание пород, линий, семейств или специализированных типов животных;

Консолидация или совершенствование существующих пород, линий, семейств животных;

Скрещивание пород, линий, семейств и межвидовой гибридизации;

Регулирование многоплодия сельскохозяйственных животных;

Проведение научных исследований и подготовка специалистов (как учебный процесс).

Отбор доноров и проведение полиовуляции.

Наиболее важным критерием на первых этапах отбора коров-доноров служит их высокая племенная ценность, т.е. способность передавать гены высокой продуктивности своим потомкам. Племенная ценность донора должна подтверждаться не только высокой продуктивностью самой коровы, но и ее родственников. В группу доноров, отобранных в качестве матерей будущих быков-производителей, включают лучших коров племенных стад.

Сначала племенную ценность коровы-донора определяют по молочной продуктивности с законченной лактацией продолжительностью 305 дней, содержанию жира и белка в молоке, пригодности коров к машинному доению, крепости конституции и экстерьеру.

При подборе, к донорам предъявляют общие и специальные требования. К общим требованиям относятся следующие:

Животное должно быть клинически здоровым;

Донор должен быть оценен по типу нервной системы, экстерьеру и конституции;

Донор должен быть оценен по воспроизводительным качествам (развитию и физиологическому состоянию половых органов, величине сервис-периода, качеству и жизнеспособности приплода);

На каждого донора должно быть оформлено ветеринарное свидетельство с указанием его клинического состояния.

К специальным относят требования, способствующие достижению конечной цели трансплантации эмбрионов, при этом необходимо учитывать следующее:

Донор должен быть типичным представителем породы, линии, семейства по экстерьеру, конституции и хозяйственно полезным признакам;

Донор должен быть оценен по племенным признакам с использованием биометрических методов;

Характерные хозяйственно полезные признаки донора должны быть оценены на возможность их фенотипической совместимости в планируемых генотипах животных.

Высокие затраты на получение телят путем трансплантации эмбрионов обуславливают необходимость отбирать таких доноров, от которых регулярно можно получать большое количество эмбрионов. Предпочтение следует отдавать коровам, сохранившим в течение трех отелов стабильную воспроизводительную способность. От коров-доноров с хорошими и устойчивыми воспроизводительными способностями можно регулярно получать через каждые 2 месяца эмбрионы.

Если исходить из общепринятого положения, что от коровы нужно получать одного теленка в год, то межотельный период в среднем не должен превышать 365 дней. Следовательно, получение от каждой коровы по одному теленку за 365 дней является основным показателем ее хорошей воспроизводительной способности.

Для оценки воспроизводительной способности можно использовать индекс воспроизводительной способности ИВС , который определяется по формуле ИВС= (п-1)  365  100  Д, где п- число полученных телят, Д – число дней между первым и последним отелами. При стабильной воспроизводительной способности индекс не должен превышать 100.

Продолжительность эмбрионального периода у коров в среднем составляет 285 дней, следовательно, оптимальный сервис-период не должен превышать 80 дней. В этот период корова должна быть оплодотворена.

После отбора коров-доноров приступают к множественной овуляции (полиовуляции). Этот метод был разработан советским эмбриологом М.М. Завадовским и его сотрудниками. Ими было доказано, что если ввести в кровь самки гонадотропные гормоны, то это приводит к стимулированию созревания дополнительного количества фолликулов. В качестве гонадотропного гормона использовалась сыворотка жеребых кобыл (СЖК).

Важным звеном в современной биотехнологии трансплантации эмбрионов крупного рогатого скота является гормональное вызывание суперовуляции у коров-доноров . В группу доноров переводят только тех коров, которые положительно реагируют на введение гормонов.

Для стимуляции множественной овуляции используют гонадотропин СЖК в сочетании с простагландинами и другими биологически активными веществами. Этот способ позволяет вызвать полиовуляцию примерно у 70 % коров. Оптимальным результатом полиовуляции является выход из яичника в воронку яйцевода 10-20 яйцеклеток. Среднее число овуляций составляет около 10, а оплодотворяемость яйцеклеток достигает 80%.

Однако лишь небольшая часть доноров обнаруживает повторную реакцию яичников после вызывания полиовуляции. В основном коровы-доноры нерегулярно отвечают на повторную гормональную обработку, т.е. один раз реагируют хорошо, а в другой раз – плохо. Поэтому количество овуляций и выход эмбрионов не являются стабильными.

На полиовуляцию влияют и такие факторы, как стадия лактации, мертворождаемость или трудные отелы, время проявления эструса, доза СЖК, месяц отела, порода, хозяйственные условия, живая масса донора, стрессы, уровень и качество кормления и т.д.

Выявлено, что удлинение периода лактации способствует лучшей реакции коров на вводимую СЖК. Оптимальным сроком для вызывания полиовуляции у лактирующих коров черно-пестрой породы является период с 60-го дня после отела.

Для оптимизации полиовуляции и получения биологически полноценных эмбрионов необходимо обеспечить полноценное кормление донора, сбалансированное по всем питательным веществам.

Оптимальная доза для коров-доноров СЖК – 2500-3000 ИЕ. При инъекции такой дозы получают в среднем 9 овуляций на одного положительно реагирующего донора.

Наивысший эффект полиовуляции достигают при введении СЖК между 10-12 сутками эстрального цикла (середина лютеальной фазы) и через 2-ое суток простагландина, вызывающего регрессию желтого тела, половую охоту и овуляцию. В течение 48 часов после инъекции простагландина у 95 % коров-доноров происходит полиовуляция со всеми признаками эструса.

Многократная полиовуляция подвержена большой изменчивости. Поэтому не все коровы-доноры имеют одинаковую предрасположенность к многократной овуляции. Для эффективной многократной полиовуляции необходим тщательный отбор доноров по ряду показателей.

Отбор производителей.

При отборе быков их оценивают по кариотипу с целью исключения хромосомных аномалий. Потомство отобранных производителей не должно иметь экстерьерно-конституциональных дефектов.

В подавляющем большинстве случаев подбор производителей и доноров проводится по плану заказного спаривания в соответствии с селекционной программой. Сперма производителей, отбираемых для осеменения доноров, должна характеризоваться наивысшей оплодотворяемостью, не ниже 85-90 %.

Основной критерий воспроизводительной способности производителей – показатель оплодотворяющей способности их спермы. Так, для оценки проверяемого производителя (быка, хряка, барана) по оплодотворяющей способности спермы организуют контрольное спаривание. Для этого отбирают из разных стад три-четыре группы коров (800-1000 гол.).

Если оплодотворяющая способность спермы проверяемого быка составляет 60 % и менее, то такого быка выбраковывают. На практике этот показатель определяется количеством (процентом) коров, оплодотворившихся от первого осеменения. Оплодотворяемость устанавливают по отсутствию половой охоты в течение 60-90 дней после осеменения.

Методы искусственного осеменения позволяют значительно раньше определить оплодотворяющую способность спермы. Так, интенсивность браковки быков по половой активности и качеству спермы составляет 25-30 %. Значительное количество спермы (20-30 %) бракуется при оценке свеже- полученных эякулятов, 10-15 % - при биологическом контроле спермы через 24 часа после замораживания.

Осеменение коров-доноров.

Эффективность полиовуляции в последующем определяется эффективностью искусственного осеменения доноров. Результаты многочисленных исследований показывают, что только 60-65 % получаемых эмбрионов пригодны для пересадки реципиентам. Остальные 35-40 % составляют яйцеклетки или дегенерированные эмбрионы.

Для искусственного осеменения коров-доноров необходимо использовать сперму только выдающихся быков-производителей, достоверно оцененных по качеству потомства.

Требования к оценке оплодотворяющей способности спермы быков, предназначенной для осеменения коров-доноров, должны быть значительно выше, чем при оплодотворении остальных коров. Оплодотворяющая способность спермы таких быков должна составлять не ниже 70 % при высокой точности ее оценки.

Для повышения оплодотворяемости доноров и выхода эмбрионов, наряду с использованием высококачественной спермы, необходимо определить сроки половой охоты для своевременного проведения искусственного осеменения. Многие признаки полиовуляции свидетельствуют о том, что лишь короткий период является наиболее благоприятным для эффективного оплодотворения и получения биологически полноценных эмбрионов.

Имеются разные мнения специалистов о времени и кратности осеменения коров с гормонально вызванной половой охотой. Как правило, таких коров осеменяют дважды: первый раз в начале появления половой охоты и второй – через 12-24 часа.

В нашей стране коров-доноров осеменяют искусственно дважды в день с интервалом 10-12 ч. каждый раз двумя-тремя дозами замороженной спермы.

Для искусственного осеменения коров-доноров применяют три способа: визуальный (с использованием влагалищного зеркала); маноцервикальный (введение во влагалище руки в перчатке и укороченной пипетки); ректоцервикальный (с фиксированием шейки матки и контролем продвижения осеменительной пипетки с помощью руки, введенной в прямую кишку).

Самую высокую эффективность искусственного осеменения коров-доноров обеспечивает ректоцервикальный способ, позволяющий контролировать состояние половых путей донора. День, в который проводится искусственное осеменение коровы-донора, считается датой оплодотворения.

Моноклональные антитела – это иммуноглобулины, синтезируемые одним клоном клеток.

Перспективна гибридизация раковых и нормальных клеток на основе которой получают гибриды – гибридомы, продуцирующие моноклональные антитела.

Под гибридомой понимают гибридную клетку, полученную на основе слияния продуцирующей антитела клетки с раковой клеткой, придающей гибридоме способность неограниченного размножения при культивировании in vitro.

В этом случае гибридомы наследуют от нормальной родительской клетки способность вырабатывать ценное биологическое вещество антитело, а от раковой клетки – способность к неограниченному росту и образованию моноклона.

Под антителом понимают белок, синтезируемый иммунной (защитной) системой организма, связывающийся специфически с антигеном.

В результате защитной реакции на антиген (чуродный белок) образуется целая комбинация различных антител представляющих неделимую смесь.

Поэтому изолировать в чистом виде нужное антитело невозможно традиционных методом.

Получить чистые антитела определенной линии можно в том случае, если изолировать клетку продуцирующую нужное нам антитело и из нее образовать клон.

Антиобразующие клетки на способны расти в питательной среде. Следовательно, их надо слить (т.е. соединить) с миеломными (раковыми клетками) клетками способными к неограниченному делению в питательной среде и продуцированию моноклональных антител.

Способы извлечения эмбрионов и их оценка.

Эффективность метода трансплантации во многом определяется способом извлечения эмбрионов. Существуют разные способы извлечения эмбрионов. Наиболее простой – убой донора. Его применяли на первых этапах развития трансплантации для демонстрации в качестве учебной практики и для научных целей. Время между убоем донора и вымыванием эмбрионов не должно превышать 30-40 мин., т.е. эмбрионы должны быть получены до начала процесса клеточного переваривания в половых органах. В настоящее время из-за потери генетически ценной коровы-донора он не применяется.

Извлечение эмбрионов хирургическим способом применяли в 70-е годы. Эмбрионы извлекают между 7-8-ми сутками после первого искусственного осеменения. При вымывании можно получить в среднем 5 эмбрионов от каждого донора. Разработаны три приема: извлечение эмбрионов через разрез верхнего свода влагалища; лапаротомия по белой линии живота (под наркозом донора); лапаротомия в области голодной ямки с применением местной анастезии. Хирургический способ извлечения эмбрионов более трудоемок; необходимы высокая квалификация хирурга, операционный зал и стерильные условия. Поэтому он применяется в редких случаях, только в научных целях.

Катетерный (нехирургический) способ извлечения эмбрионов практически не вызывает каких-либо осложнений в организме животного. Катетерным способом можно успешно извлекать эмбрионы в животноводческом помещении. Эффективность способа высока, многократна. С помощью катетерного способа получают в среднем 4,3 нормального эмбриона от 86 % коров-доноров. В среднем, из вымытых яйцеклеток, до 25 % оказываются неоплодотворенными или дегенерированными. Вымывают эмбрионы на 7-8-е сутки после осеменения. Для вымывания используют питательную среду Дюльбекко. Продолжительность манипуляции 20-50 минут.

Для получения эмбрионов этим способом разработаны специальные катетеры. Промывную среду вводят в рога матки 5-8 раз и удаляют из них с помощью шприца. Промывание рогов матки обеспечивает извлечение до 76 % эмбрионов от числа овуляций. Основную часть эмбрионов, более 50 %, извлекают в первых трех-четырех смывах находящихся на стадии морулы или бластоцисты при 32-х или 64-х бластомерах.

После вымывания эмбрионов в матку вводят раствор антибиотиков с целью антисептики.

Перед пересадкой эмбриона реципиенту, необходимо оценить его качество и определить способ пересадки. Оценивают эмбрионы различными методами: морфологический, прижизненное окрашивание, цитологический и др.

Считается, что степень точности морфологического метода может быть доведена до 90 % и более. Эмбрионы из яйцевода в матку поступают на 3-5-е сутки, однако в пределах 10-15 % могут поступать и через 6-8 суток. Эмбрионы, не достигшие определенной стадии развития в указанное время, как правило погибают. В этой связи качество эмбрионов оценивается на 7-8-е сутки по степени их развития до бластоцисты.

При морфологической оценке особое внимание обращают на внешнюю форму зиготы, состояние зоны пелюцида, число бластомеров, равномерность дробления, выраженность эмбриобласта и трофобласта, четкость в очертании клеток, вакуолизацию цитоплазмы – просветление ее переферии, деструкцию цитоплазмы (сбивание в комок), целостность клеточной мембраны и выход цитоплазмы наружу.

На ранних стадиях дробления особое значение придается конфигурации бластомеров. Нормальная конфигурация обеспечивает тесный контакт с наибольшим количеством клеток при минимальном объеме. Неправильное дробление клеток эмбрионов приводит к нарушению пространственного расположения бластомеров, что приводит к нарушению в последующих стадиях развития . Эмбрионы коров оцениваются на 7-8-й день после первого осеменения под микроскопом при 100-160 – кратном увеличении.

В России принята 5-ти бальная школа оценки качества эмбрионов, учитывающая: целостность прозрачной оболочки, равномерность дробления, состояние цитоплазмы, прозрачность перевителинового пространства, соответствие стадии развития. Наиболее пригодны для пересадки эмбрионы, оцененные 4 – 5 баллами, находящиеся в стадии поздней морулы или бластоцисты.

Для улучшения морфологической оценки дополнительно используют флуоресцентную окраску, позволяющую отличить живых эмбрионов от погибших.

Оценка качества эмбрионов методом их окраски основана на способности красителей окрашивать морфологические структуры живой и мёртвой клетки. Прижизненную окраску эмбрионов производят нетоксичными красителями.

Идеальный эмбрион должен быть компактным, сферической формы, с однородной окраской, с клетками одинаковой величины, с гладкой, плоской и равномерно сформированной зоной пеллюцида, без включений в перевителиновом пространстве.

Важным критерием для оценки качества эмбрионов является интенсивность развития стадий. Эмбрионы с замедленным развитием не используются для пересадки, замораживания и др.

Выбраковке подлежат дегенерированные неоплодотворённые яйцеклетки, которые можно обнаружить при извлечении эмбрионов. Непригодные для трансплантации эмбрионы имеют дефектную морулу или бластоцисту, признаками которых являются дефекты прозрачной оболочки, распад бластомеров, разная величина бластомеров, нарушение межклеточной связи.

Кратковременное культивирование криоконсервация и хранение эмбрионов.

Кратковременное хранение и культивирование (развитие) эмбрионов дает возможность транспортировать их в другие хозяйства. В настоящее время широкое распространение получил метод краткосрочного хранения эмбрионов in vitro. Установлено, что эмбрионы коровы могут продолжать свое развитие до определенных стадий при температуре тела животного в специальных культивируемых (питательных) средах и в определенных атмосферных условиях.

После извлечения и оценки на жизнеспособность, эмбрионы переносят в питательные среды с температурой 37 0 С. Разработано несколько питательных сред для кратковременного хранения эмбрионов in vitro (95 ч). Наиболее часто в качестве питательных сред для культивирования эмбрионов используют: ТС-199; Хэма F-10; Игла, солевые растворы Дюльбека, Бринстера с различными биологическими и синтетическими добавками. Для поддержания оптимальных условий развития эмбрионов используют газовую среду, содержащую 90 % азота, 5 % кислорода и 5 % углекислого газа. Культивирование эмбрионов в пробирках или соломинах является более простым методом, позволяющим транспортировать эмбрионы на дальние расстояния.

Второй метод кратковременного хранения эмбрионов осуществляется при температуре 8-12 0 С, продолжительность 3-4 сут. Скорость охлаждения медленная во избежания температурного шока. Для этого используют синтетические среды с различными белковыми добавками: бычий сывороточный альбумин (БСА), сыворотку крови хряков кастратов (СКХ), и нормальную сыворотку бычков кастратов (НСБК).

Третий метод кратковременного хранения эмбрионов протекает in vivo, т.е. в половых органах промежуточного реципиента (кроликов, мышей и др.) для транспортировки на дальнее расстояние.

Метод основан на высокой толерантности (терпимости) слизистой половых путей самки в период течки и охоты к чужеродным белкам. Для этого, в 1982г. была сконструирована специальная камера хранения эмбрионов у реципиентов в брюшной полости. В такой камере эмбрионы сохраняются в течение 72 ч.

Эффективность трансплантации эмбрионов крупного рогатого скота во многом определяется условиями хранения зигот. Самым эффективным и перспективным методом консервации эмбрионов является их глубокое замораживание (криоконсервация) в жидком азоте при температуре – 196 0 С. Этот метод значительно расширяет возможности трансплантации и является надежной биотехнологической основой селекции животных.

При хранении замороженных эмбрионов (-196 0 С) имеется ряд преимуществ, которые позволяют проводить пересадку эмбрионов в любое время, создавать «банк» эмбрионов от высокоценных племенных животных, малочисленных и исчезающих пород, транспортировать эмбрионы в любое время года.

Для замораживания эмбрионов используют автоматические программные замораживатели УОП-12. Чтобы уберечь эмбрионы от разрушения при замораживании и оттаивании, применяют специальные криозащитные вещества, легко проникающие в клетку, – криопротектор глицерин.

Перед замораживанием эмбрионы помещают в криопротектор с возрастающей концентрацией веществ для уравновешивания осмотического давления. Существует быстрый способ криоконсервирования: охлаждение от +20 0 С до – 6 0 С со скоростью 1 0 С/мин. Последующее охлаждение до -35 0 С со скоростью 0,3 0 С/мин. Далее, перенос эмбриона в жидкий азот.

Размораживают эмбрионы при 25 или 37 0 С в течение 10-12 с. Затем их отмывают от криопротектора и оценивают. Выживаемость эмбрионов должна быть не ниже 80%, стельность 55-60%, в этом случае трансплантация зоотехнически и экономически рентабельна.

Отбор, подготовка и пересадка эмбрионов реципиентам.

В среднем на одного донора отбирают 5-6 реципиентов, с учетом возможной последующей выбраковки из-за непригодности их к воспроизводству. Коровы-реципиенты должны быть не старше 7 лет с отсутствием гинекологических отклонений, хорошими племенными кондициями и воспроизводительными качествами. Телки-реципиенты должны быть 16-18 месячного возраста с живой массой 350-380 кг.

Результаты пересадки эмбрионов у коров бывают высокими только в том случае, если день овуляции у доноров и реципиентов совпадает по времени, тогда слизистые половых органов доноров и реципиентов находятся в идентичных физиологических состояниях.

Для этого проводят групповую синхронизацию половой охоты. Расхождения в синхронизации не должно превышать  12 ч. Запаздывание охоты у реципиентов на 10-12ч достоверно снижает процент проживляемости эмбрионов, а опережение охоты на 12 ч не влияет на эффективность приживляемости трансплантантов.

При правильной синхронизации можно достичь 90% стельности реципиентов, тогда как расхождение в проявлении половой охоты между донором и реципиентом более чем на 24 ч, снижает отельность до 50% и ниже.

Разработаны способы пересадки эмбрионов реципиентами – хирургический и нехирургический. При хирургическом способы пересадки эмбрионов применяют лапаратомию по белой линии живота или в области подвздоха. Лапаратомия проводится под общим наркозом при спинном положении животного. Длина разреза по белой линии живота составляет 10 см.

До 70-х годов для извлечения и пересадки эмбрионов крупного рогатого скота использовали в основном хирургический способ. Однако, он требует больших затрат средств. Поэтому в последние 10-15 лет пересадку эмбрионов в основном осуществляют нехирургическим способом.

Основным преимуществом нехирургического способа пересадки эмбрионов, кроме простоты большой экономичности, является возможность многократного использования реципиента. Разработано несколько способов, но все они основаны на одном принципе – введении эмбриона в рог матки через шейку, вследствие чего этот способ назван цервикальным. Катетер, в котором находится пайета с эмбрионом , осторожно вводят до шейки матки и под ректальным контролем проводят через цервикальный канал, глубоко в рог матки ближе к его верхней части и выталкивают эмбрион вместе со средой в просвет рога матки.

На 60-е сутки после пересадки эмбрионов, реципиентов проверяют на наличие стельности методом ректальной пальпации. Этот метод является классическим и дает большую точность.

Внедрение методов трансплантации эмбрионов и увеличения многоплодия коров обуславливает необходимость определения происхождения телят. Для этого используют группы животных с их антигенами. Одинаковые группы крови возможны лишь у однояйцовых близнецов. Определение и уточнение происхождения телят необходимы в связи с тем, что могут быть ошибки при ведении племенного учета, использования спермы разных быков. Группы крови животных определяют в специальных лабораториях моноспецифическими сыворотками.

Экстракорпоральное оплодотворение и развитие эмбрионов вне организма.

В настоящее время большое внимание уделяется изучению механизма экстракорпорального оплодотворения ооцитов, или оплодотворения in vitro (т.е. вне животного организма), позволяющего более интенсивно использовать в воспроизводстве высокоценных в племенном отношении коров, что позволит резко увеличить генетический прогресс в популяции.

В настоящее время разработаны методы, позволяющие выделить из яичников коров до 200 ооцитов, культивировать их и оплодотворять in vitro. Однако выход полноценных эмбрионов остается крайне низким, поэтому продолжаются исследования направленные на разработку новых и совершенствование прежних методик.

Оплодотворение ооцитов in vitro достигнуто у 20 видов млекопитающих, в т.ч. и у человека, в 1981 г. получено нормальное потомство. Процесс оплодотворения гамет проходит экстракорпорально и в контролируемых условиях. Окончательной оценкой истинного оплодотворения ооцитов in vitro является пересадка зиготы реципиенту и рождение живого животного.

Культивирование ооцитов in vitro.

Экстракорпоральному оплодотворению предшествует культивирование ооцитов in vitro.

Под культивированием ооцитов in vitro понимают процесс созревания незрелых ооцитов в искусственных питательных средах, в которых незрелые ооциты проходят мейотическое созревание до метафазы второго деления, т.е. до стадии готовности к оплодотворению.

Для выделения ооцитов из фолликулов , как правило, используют яичники от убитых коров и реже яичники, извлеченные оперативным путем. После извлечения, лучшие яичники (диаметром 2-6 мм) отбирают, остальные выбраковывают. Наиболее приемлем метод извлечения ооцитов из фолликулов путем рассечения их лезвием. Под контролем стерео микроскопов МБС-9 и МБС-10 отбирают ооциты с компактными кумулюсом.

Для оценки ооцитов по жизнеспособности разработано несколько методов, наибольшее распространение из которых получил морфологический.

К основным морфологическим признакам, характеризующим биологическую полноценность ооцитов, относят структуру клеток кумклюса и самого ооцита.

Ооцит размером 2-6 мм окружен клетками кумулюса. Компактный, многослойный, плотно прилегающий к ооциту кумулюс служит критерием устойчивости к атретическим изменениям в фолликуле, из которого извлечен ооцит.

Ооциты, пригодные для культивирования, должны отвечать следующим требованиям: форма округлая; ооплазма мелкозернистая, гомогенная, равномерно заполняет весь ооцит; прозрачная оболочка равномерная по ширине, опалесцирует, округлой формы; кумулюс компактный, многослойный, плотно прилегающий к ооциту, однородный.

Жизнеспособность ооцитов определяют с помощью флюоресцентных красителей. Нежизнеспособные клетки окрашиваются через 7-10 мин, в то время как жизнеспособные не окрашиваются. Ооциты, отвечающие необходимым требованиям ставят на культивирование.

Разработано несколько способов культивирования ооцитов. Основные из них: культивирование в закрытых сосудах; в чашках Петри питательной среде покрытой слоем вазелинового масла. При любых способах культивирования необходимы: стерильность на всех этапах работы; газовой стера; температура 39 0 С при максимальной влажности.

Для культивирования ооцитов млекопитающих в зависимости от вида животных используют культурные среды двух видов: простые и синтетические.

Во всех средах с указанными добавками (ЛГ, ФСГ и др.) 80 % ооцитов достигают стадии метафазы второго деления созревания. Таким образом, во время созревания ооцитов in vitro полностью завершается первое мейотическое деление, а второе деление созревания большинства ооцитов заканчивается стадией мейоза метафазы II. Окончательное завершение мейоза происходит после оплодотворения.

Изменения в белковом синтезе ооцитов связаны не с ядерным, а с цитоплазматическим созреванием, имеющим решающее значение для нормального оплодотворения и раннего эмбрионального развития вплоть до имплантации эмбриона в стенку матки реципиента.

Капацитация спермиев.

Чтобы спермии могли оплодотворять яйцеклетку, в них должны произойти изменения, характеризующие капацитацию, т.е. их готовность к оплодотворению.

Под капацитацией (созреванием) спермиев понимают комплекс физиологических и физико-химических изменений, в результате которых спермии преобретают способность проникать через блестящую оболочку, пенетрировать и оплодотворять яйцеклетку.

В естественных условиях капацитация происходит во время прохождения спермиев по генитальному тракту самки, где они отдельно от семенной плазмы. Капацитация может осуществляться in vitro, если спермии будут находиться в определенных культурной и газовой средах.

Для капацитации спермиев крупного рогатого скота разработаны культуральные среды: Кребса-Рингера, Тироде, Бринстера. Продолжительность капацитации спермиев в этих средах составляет 8 часов.

Для экстракорпорального оплодотворения применяют глубокозамороженную сперму, упакованную в пакеты.

Особую проблему представляет объективная оценка капацитации спермиев. Для доказательства капацитации используют акросомную реакцию. После прикрепления спермиев к зоне пеллюцида яйцеклетки происходит акросомная реакция.

Акросома представляет собой органеллу спермия, богатую различными ферментами и расположенную под плазматической мембраной, окружающей головку спермия. При акросомной реакции освобождаются ферменты, обуславливающие оплодотворяющую способность спермиев. Ферменты разрушают зону пеллюцида, что позволяет спермию продвинутся в ооплазму ооцита. Из множества проникших сквозь зону пеллюцида ооцита спермиев лишь один сливается с плазматической мембраной яйцеклетки и оплодотворяет ее. Возникает зигота.

Экстракорпоральное оплодотворение in vitro созревших ооцитов сводится к следующему. Ооциты коров, достигшие стадии созревания метафазы II, оплодотворяют капацитированными спермиями. У ряда видов с.-х. животных в зависимости от качества созревших in vitro гамет оплодотворяемость составляет 50-70 %. Основной причиной снижения способности к эмбриональному развитию in vitro оплодотворенных яйцеклеток является несовершенство культуральных сред для ранних эмбрионов, вследствие чего развитие эмбрионов блокируется на стадии 8-16 бластомеров.

Получение эмбрионов из оплодотворенных in vitro ооцитов.

Конечная цель экстракорпорального оплодотворения созревших in vitro ооцитов – получение эмбрионов пригодных для трансплантации. При культивировании ранних эмбрионов крупного рогатого скота в большинстве случаев эмбриональное развитие блокируется на стадии 8-16 клеток, т.е. когда в естественных условиях эмбрионы переходят из яйцевода в матку. Лишь единичные эмбрионы развиваются до стадий поздней морулы и бластоцисты, пригодных для трансплантации.

Инкубацию эмбрионов проводят двумя способами: в яйцеводе кролика, овцы или коровы и в культурных средах, таких как ТС-199; ХЭМ-Ф-10; МРМ, солевые растворы Дюльбекко, Брингстера с различными биологическими и синтетическими добавками.

Первый контроль за развитием зародыша проводят через 24 часа после оплодотворения. Сингамия, т.е. вступление в тесный контакт пронуклеусов, в результате чего происходит окончательное слияние мужской и женской гамет, наблюдается через 19 часов после экстракорпорального оплодотворения и образование двухклеточного эмбриона через 22 часа.

В 1983 г. родился первый теленок из дозревшего in vitro фолликулярного ооцита после его экстракорпорального оплодотворения. Несмотря на существенные положительные результаты по экстракорпоральному оплодотворению ооцитов и получению эмбрионов in vitro, многие проблемы, такие, как совершенствование культивирования ооцитов in vitro, капацитации сперматозоидов и др. остаются нерешенными.

Клонирование животных

Термин «клон» (побег) был впервые использован в 1903 г. Вебером (Германия) применительно к растениям, размножающимся вегетативным путем и означал, что дочерние растения клона генетически идентичны материнскому.

Клонирование – получение потомков, являющихся точной генетической копией организма. Совокупность таких потомков – копий, происходящих от одного организма, называют клоном. Организмы в пределах каждого клона характеризуются одинаковой фенотипической однородностью и идентичным генотипом.

Методы получения генокопий:

1. Пересадка ядер соматических клеток в энуклеированную яйцеклетку;

2. Индуцирование партеногенеза (андрогенез, гиногенез), позволяющего полностью передавать потомкам генотип или матери име отца.

Дифференцированная соматическая клетка содержит полный набор генов свойственных данному организму. Кариотип таких клеток не отличается ничем от кариотипа оплодотворенной яйцеклетки (зиготы).

У животных в соматических клетках после их дифференциации (7-8 день) происходит стабильная репрессия или инактивация части генома, что ограничивает использование ядер дифференцированных клеток в клонировании.

Этапы клонирования:


  1. Извлечение ядер (бластомеров у 8-16 клеточного эмбриона);

  2. Разделение яйцеклетки-реципиента на ядросодержащий и безъядерный фрагменты (получение энуклеированной яйцеклетки);

  3. Слияние энуклеированной яйцеклетки с ядром (бластомерам) с помощью инактивированного вируса Сендай или электрического поля;

  4. Помещение реконструированной зиготы огаровый цилиндр;

  5. Культивирование эмбрионов в яйцеводах промежуточных реципиентов до стадии бластоцисты (7-8 дней);

  6. Пересадка бластацисты конечному реципиенту.
Получение химерных животных.

Chimaira – огнедышащее животное, чудовище с головой льва, туловищем козы и хвостом дракона.

Химера – сборное, составное животное, состоящее из генетически разнородных клеточных популяций, происходящих более чем от одной оплодотворенной яйцеклетки.

С генетической точки зрения химеры – это продукт объединения 2 и более ранних эмбрионов, вследствие чего они обладают сложным комбинированным генотипом.

Химеры – гибридные животные, у потомков происходит расщепление, но отсутствует перекомбинация генов исходных пород или видов, поэтому химеры сохраняют признаки и свойства исходных форм лишь в 1 поколении.

Методы получения химер

Агрегационный метод создания химер

Разработан В. Тарковским (1961) и Б. Минцем (1962) при получении химерных мышей.

Из яйцеводов самок извлекают эмбрионы на 4-5 день после оплодотворения (8-16 бластомеров), обрабатывают ферментом проназой с целью освобождения от прозрачной оболочки и сближают их с помощью стеклянной микроиглы или толчков струн из микропипетки в питательной среде под слоем парафинового масла на обогреваемом столике микроскопа (t 0 +37 0 С). Объединенные эмбрионы культивируют в течение 24-48 часов до завершения агрегации.

Инъекционный метод создания химер

Разработан Р. Гарднером (1968).

При этом используют эмбрионы на стадии бластоцисты (7-8 дней). Эмбрион удерживают всасывающей пипеткой, закрепленной на манипуляторе, путем прокалывания прозрачной оболочки делают отверстие 2 стеклянными иглами и растягивают его. В образованную щель вводят третью иглу и с ее помощью щель превращается в отверстие – формы, в которое инъекционной пипеткой впрыскиваются внутренняя клеточная масса эмбриона – донора.

Получение трансгенных животных.

Современные методы селекции с.-х. животных базируются на использовании внутривидовой генетической изменчивости. Как правило виды генетически изолированы друг от друга, т.е. не скрещиваются между собой, т.к. этому препятствуют так называемые механизмы репродуктивной изоляции:

а) презиготические – препятствуют образованию зигот;

б) постзиготические – снижение жизнеспособности и плодовитости животных.

Преодолеть биологические границы видов и использовать межвидовую генетическую изменчивость для создания новых форм животных можно с помощью переноса генов.

Под переносом чужеродных генов понимают пересадку вне организма рекомбинантных молекул ДНК в клетке другого животного, вне зависимости от видовой принадлежности.

Если чужеродный ген интегрировался в геноме другого животного, то такой ген обозначается как трансген, а животные называются трансгенными. Кодируемый трансгеном белок носит название трансгенного продукта. Если животные передают трансгены своим потомкам, то образуются трансгенные линии.

Если произошла интеграция чужеродного гена в клетках высших животных, то они становятся носителями новых наследственных свойств и продуцируют новые для них вещества.

Для переноса генов млекопитающим используют 3 метода:


  1. Микроинъекцию рекомбинантной ДНК в пронуклеус зиготы;

  2. Использование ретровирусов в качестве векторов;

  3. Инъекцию трансформированных эмбриональных стволовых клеток в эмбрион.
Все методы переноса генетической информации млекопитающим охватывают ранние этапы онтогенеза – от оплодотворенной яйцеклетки до формирования бластоцисты, способной инплантироваться в матку реципиента.

Государственное образовательное учреждение Высшего

профессионального образования

ВлГУ

Кафедра истории и религиоведения

Реферат

на тему:

Генная и клеточная инженерия. Биотехнологии.

Выполнила: Шипилова Е.В. Гр.ЗЮ-110

Проверила: доцент кафедры истории и

религиоведения Зубков С.А.

Владимир 2011

1. Введение 3

2.Возможности генной инженерии. Биотехнологии 5

3.1. Сельское хозяйство 9

3.2 Медицина и фармацевтика 11

4. Клонирование 14

4.1 Состояние исследований по терапевтическому

клонированию в России 16

5. Проблемы 17

6. Заключение 23

Список литературы 25

1. Введение

Генная инженерия - направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

Генная инженерия возникла в нач. 70-х гг. 20 в. Генетическая инженерия основана на извлечении из клеток какого-либо организма гена (кодирующего нужный продукт) или группы генов и соединении их со специальными молекулами ДНК (т. н. векторами), способными проникать в клетки другого организма (главным образом микроорганизмов) и размножаться в них, т.е. создание молекул рекомбинантных ДНК.

Рекомбинантные (чужеродные) ДНК привносят в реципиентный организм новые генетические и физико-биохимические свойства. К числу таких свойств можно отнести синтез аминокислот и белков, гормонов, ферментов, витаминов и др.

Применение методов генетической инженерии открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшения качества продукции и др. Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, – трансгеном. Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создать трансгенные линии.

Методы генетической инженерии позволяют создавать новые генотипы растений быстрее, чем классические методы селекции и появляется возможность целенаправленного изменения генотипа – трансформации.

Генетическая трансформация заключается главным образом в переносе чужеродных или модифицированных генов в эукариотические клетки. В клетках растений возможна экспрессия генов, перенесенных не только от других растений, но и от микроорганизмов и даже животных.

Получение растений с новыми свойствами из трансформированных клеток (регенерация) возможно благодаря их свойству топитотентности, т.е. способность отдельных клеток в процессе реализации генетической информации к развитию в целый организм.

2. Возможности генной инженерии. Биотехнологии.

В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок.

Очевидно поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами. Ситуация аналогична той, которая наблюдается в компьютерной индустрии, где помимо увеличения объёмов обрабатываемой информации и улучшения самих компьютеров, нужны ещё и операционные системы управления информацией, типа микрософтовских “окон”.

Для чистого вырезания трансгенного ДНК в растительный геном, всё больше применяют заимствованные из микробной генетики системы гомологичной рекомбинации, такие как системы Cre-lox и Flp-frt. Будущее, очевидно, будет за управляемым переносом генов от сорта к сорту, основанного на применении предварительно подготовленного растительного материала, который уже содержит в нужных хромосомах участки гомологии, необходимого для гомологичного встраивания трангена. Помимо интегративных систем экспрессии, будут опробованы автономно реплицирующиеся векторы.осбый интерес представляют искуственные хромосомы растений, которые теоретически не накладывают никаких ограничений на объём вносимой теоретической информации.

Учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также вследствие разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью. Применяемые на практике методы можно разделить на две категории:

1. Методы, позволяющие вести экспрессионное профилирование: субстракционная гибридизация, электронное сравнение EST-библиотек, «генные чипы» и так далее. Они позволяют устанавливать корреляцию между тем или иным фенотипическим признаком и активностью конкретных генов. 2. Позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция). Вышеназванные методы не предполагают никаких изначальных сведений о генах, контролирующих тот или иной признак. Отсутствие рационального компонента в данном случае является положительным обстоятельством, поскольку не ограничен нашими сегодняшними представлениями о природе и генном контроле конкретного интересующего нас признака.

Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека

Использование генно-инженерных продуктов в медицине.

Природные продукты и сфера применения генно-инженерных продуктов

Антикоагуля-торы

Активатор тканевого плазминогена (АТП), активирует плазмин. Фермент, вовлечённый в рассасывание тромбов; эффективен при лечении больных инфарктом миокарда.

Факторы крови

Фактор VIII ускоряет образование сгустков; дефицитен у гемофиликов. Использование фактора VIII, полученного генно-инженерными методами, устраняет риск связанный с переливанием крови.
Факторы стимулирующие образование колоний Ростовые факторы иммунной системы, которые стимулируют образование лейкоцитов. Применяют для лечения иммунодефицита и борьбе с инфекциями.

эритропоэтин

Стимулирует образование эритроцитов. Применяют для лечения анемии у больных с почечной недостаточностью.
Ростовые факторы

Стимулируют дифференциацию и рост различных типов клеток.

Применяют для ускорения лечения ран.

Гормон роста человека Применяют при лечении карликовости.
Человеческий инсулин Используется для лечения диабета

Интерферон

Препятствует размножению вирусов. Также используется для лечения некоторых форм раковых заболеваний.

Лейксины

Активируют и стимулируют работу различных типов лейкоцитов. Возможно применение при залечиваний ран, при заражении ВИЧ, раковых заболеваний,

Моноклональ-

ные антитела

Высочайшая специфичность связанная с антителами используется в диагностических целях. применяют также для адресной доставки лекарств, токсинов, радиоактивных и изотопных соединений к раковым опухолям при терапии раков, имеется много других сфер применения.
Супероксид дисмутаз Предотвращает поражение тканей реактивными оксипроизводными в условиях кратковременной нехватки кислорода, особенно в ходе хирургических операций, когда нужно внезапно восстановить ток крови.
Искуственно полученные вакцины (первой была получена вакцина против гепатита В) по многим показателям лучше обычных вакцин.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.

3. Направления генной инженерии.

3. 1 Сельское хозяйство.

Генная инженерия непосредственно в сельском хозяйстве имела место быть уже в конце 1980-х годов, когда удалось успешно внедрить новые гены в десятки видов растений и животных - создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов.

Одна из важных задач генной инженерии - получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций.

Другая важная задача генетической инженерии связана с защитой растений от насекомых-вредителей. Применение инсектицидов не всегда является эффективным в связи с их токсичностью и возможностью смыва инсектицидов с растений дождевой водой. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, которые позволяют синтезировать инсектициды бактериального происхождения. Эти гены были введены в клетки картофеля, томатов и хлопчатника, вследствие чего трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе и к хлопковой совке. Применение генной инженерии в сельском хозяйстве позволило сократить использование инсектицидов на 40 - 60%. Генными инженерами были выведены трансгенные растения с удлиненным сроком созревания плодов. Это дает возможность снимать такие помидоры с куста красными с уверенностью, что они не перезреют при транспортировке.

Список растений, к которым успешно применены методы генной инженерии, пополняется. В него входят яблоня, виноград, слива, капуста, баклажаны, огурцы, пшеница, рис, соя, рожь и множество других сельскохозяйственных культур.

Одним из основных направлений, в котором применяются технологии генной инженерии, является сельское хозяйство. Классическим уже методом улучшения качества продуктов сельского хозяйства является селекция – процесс, в котором путем искусственного отбора выделяются и скрещиваются отдельные растения или животные, обладающие определенными свойствами, для наследственной передачи этих свойств и их усиления. Этот процесс достаточно продолжительный и не всегда действительно результативный. Генная инженерия обладает способностью наделить какой-то живой организм свойствами, ему нехарактерными, усилить проявление каких-то существующих свойств или исключить их. Это происходит за счет внедрения новых или исключения старых генов из ДНК организма.

К примеру, таким образом был выведен особый сорт картофеля, устойчивого к колорадскому жуку. Для этого в геном картофеля был введен ген почвенной тюрингской бациллы Bacillus thuringiensis, которая вырабатывает особый белок, губительный для колорадского жука, но безвредный для человека. Применение генной инженерии для изменения свойств растений, как правило, делается как раз для повышения их устойчивости перед вредителями, неблагоприятными условиями среды, улучшения их вкусовых и ростовых качеств. Вмешательство в геном животных используется для ускорения их роста и повышения продуктивности. В продуктах сельского хозяйства таким образом также искусственно повышается количество незаменимых аминокислот и витаминов, а также их питательная ценность.

Количество аргументов за использование ГМП значительно превосходит возможные аргументы против. Так, сторонники ГМП ссылаются в частности на высокий уровень контроля качества всех генетически модифицированных продуктов (ГМП). За двадцатилетнюю историю использования этих продуктов в разных странах мира не было выявлено ни одного факта их отрицательного воздействия на здоровье человека, что нельзя сказать о продуктах традиционного сельского хозяйства, в котором неизбежно применение разного рода удобрений, многие из которых признаны вредными для человека. Более того, селекция, которая используется в сельском хозяйстве на протяжении веков, по сути, преследует целью ту же генную модификацию организмов, только осуществляет это за значительно больший период времени. Генная инженерия просто способна привнести необходимые изменения в организм за короткий срок, а потому использование ГМП не опаснее, чем использование любых других продуктов, выведенных методом классической селекции.

Противники использования генной инженерии в сельском хозяйстве апеллируют к недостаточности исследований безопасности ГМП (однако этот вопрос постоянно продолжает исследоваться), а также к тому факту, что ГМО иногда становятся причиной исчезновения отдельных видов. К примеру, одичавшие генетически модифицированные организмы могут вытеснить популяции диких видов за счет большей приспособленности к неблагоприятным условиям окружающей среды.

3.2. Фармацевтика и медицина.

Производство и применение вакцин против вирусных заболеваний позволили медиками ликвидировать полностью эпидемии чумы и оспы, от которых раньше умирали миллионы людей. Метод генной инженерии, в отличие от других методов, позволяет получить абсолютно безвредную (не содержащую инфекционного начала) вакцину. Ведутся также работы по производству вакцин от гриппа, гепатита и других вирусных заболеваний человека.

Услугами генной инженерии особенно успешно пользуются фармацевты, для которых этот метод дает сравнительно дешевые, но жизненно необходимые гормоны, такие как инсулин, интерферон, гормоны роста и другие, имеющие белковую природу. По заказу фармацевтов генными инженерами налажено производство человеческого гормона инсулина (вместо ранее применяемого животного инсулина), играющего важную роль в борьбе с сахарным диабетом. Методом генной инженерии получают также достаточно дешевый и чистый человеческий интерферон - белок, обладающий универсальным антивирусным действием, антиген вируса гепатита В.

В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200 - 250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. В 1978 году исследователи из компании «Генентек» впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания «Genentec» в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

Практическое применение. Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии. Интерферон - белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни - гипофизарной карликовости. Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, - т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.

4. Клонирование.

Основой для возникновения одного из самых перспективных биомедицинских направлений в заместительной клеточной терапии - терапевтического клонирования явились два важнейших открытия конца XX века. Это, во-первых, создание клонированной овечки Долли , во-вторых, получение эмбриональных стволовых клеток (ЭСК).

Клонирование – это воспроизведение живого существа его неполовых (соматических) клеток. Клонирование органов и ней – важнейшая задача в области трансплантологии, травматологии и других областях медицины и биологии. При пересадке клонированных органов не возникают реакции отторжения и отсутствуют возможные неблагоприятные последствия (например, рак, развивающийся на фоне иммунодефицита). Клонированные органы – это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи вследствие каких-либо заболеваний. Клонирование может дать бездетным людям возможно, иметь своих собственных детей, помочь людям, страдающим тяжелыми генетическими заболеваниями. Так, если гены, определяющие какое-либо наследственное заболевание, содержатся в хромосомах то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, тогда появится ребенок, лишенный опасных генов, копия матери. Если эти гены содержатся в хромосомах матери, в ее яйцеклетку будет перемещено ядро соматической клетки отца и появится здоровый ребенок, копия отца. Дальнейший прогресс человечества во многом связан с развитием биотехнологии. Вместе с тем необходимо учитывать, что неконтролируемое распространение генно-инженерных живых организмов и продуктов может нарушить биологический баланс в природе и представлять угрозу здоровью человека.

Клонирование целого организма называется репродуктивным. В этом направлении до сих пор ведутся исследования, однако есть и определенные успехи.

Широко известен случай клонирования в Великобритании овцы Долли. Этот эксперимент по клонированию млекопитающего был поставлен группой ученых, возглавляемой Яном Вилмутом. Тогда в 277 яйцеклеток были перенесены ядра, взятые из вымени животного-донора. Из них образовалось 29 эмбрионов, один из которых выжил. Долли родилась 5 июля 1996 года и стала первым млекопитающим, чье клонирование прошло успешно. Клонированное животное прожило 6,5 лет и умерло 14 февраля 2003 от прогрессирующего заболевания лёгких, вызванного ретровирусом. Сообщается, что это распространенное заболевание у овец, которые содержатся в закрытом помещении, а Долли из соображений безопасности практически не выводили пастись.

Существуют некоторые заблуждения в представлениях о клонировании. Так клонирование человека или животного однозначно не способно повторить сознание. Клонированный индивид не будет наделен разумом исходного организма, он будет нуждаться в воспитании, образовании и т.д. Более того, спорным является и вопрос полной внешней идентичности клона. Как правило, клон не является полной копией оригинала, т.к. при клонировании копируется только генотип, что не означает однозначное повторение фенотипа организма. Фенотип формируется на основе определенных генетических данных, однако условия, в которых будет выращиваться клон, способны некоторым образом повлиять на его развитие: рост, вес, телосложение, некоторые особенности умственного развития.

В большинстве стран мира любые работы по репродуктивному клонированию человека запрещены. Такое клонирование человека встречается с еще большими этическими, религиозными и юридическими проблемами, чем терапевтическое. В принципе, определенного мнения общественности на этот счет не существует, ровно как и крупнейшие мировые религии не способны дать этому явлению однозначную оценку, ибо это выходит за рамки их классических учений, а потому требует аргументации. Появляются также некоторые юридические сложности, вроде вопросов отцовства, материнства, наследования, брака и некоторых других. Развитие клонирования небезопасно также и из соображений контроля над ним, а также возможной утечки технологии в криминальные и террористические круги. Отдельную обеспокоенность вызывает высокий процент неудач при клонировании, что являет опасность появления людей-уродов.

4.1 Состояние исследований по терапевтическому клонированию в России.

Несмотря на бум по поводу больших возможностей ЭСК в лечении различных заболеваний, работы по терапевтическому клонированию в России пока практически не ведутся. В первую очередь это объясняется отсутствием законодательной базы для проведения исследований с использованием овоцитов и эмбрионов человека. С принятием таких законов для России существует реальная возможность очень быстрого развития терапевтического клонирования. В нашей стране имеются эффективные клеточные технологии получения реконструированных эмбрионов методом трансплантации ядер. По-существу, основы современных технологий переноса ядер соматических клеток, сочетающие микрохирургию и электрослияние были разработаны впервые у нас в 80-х годах прошлого столетия . Также имеются эффективные технологии получения линий человеческих ЭСК .

Реализовывать задачи терапевтического клонирования возможно на основе центров репродукции, которые помимо их прямого предназначения, могут стать цент­рами по получению линий ЭСК, в первую очередь, не­посредственно для женщин - пациенток данного центра и любых членов их семей. Можно ожидать, что с развитием терапевтических технологий получение соб­ственных ЭСК станет доступно каждому человеку. Не­обходимо осуществлять тесное сотрудничество центров репродукции с соответствующими научно-исследовательскими лабораториями, ориентированными на решение фундаментальных проблем и на разработку новых технологий. К подобным технологиям можно отнести реконструкцию эмбрионов с применением неинвазивных оптико-лазерных приемов микроманипулирования в целях терапевтического клонирования

5. Проблемы генной инженерии.

Генная инженерия – это абсолютно новая технология, разрушающая фундаментальные генетические барьеры не только между видами, но и между людьми, животными и растениями. Объединяя гены непохожих и не состоящих в родстве видов, навсегда изменяя их генетические коды, создаются новые организмы, которые будут передавать генетические изменения своим потомкам по наследству. Сегодня ученые способны вырезать, вставлять, рекомбинировать, трансформировать, редактировать и программировать генетический материал. Животные и даже человеческие гены добавляются растениям или животным, порождая невообразимые трансгенные жизненные формы. В первый раз в истории человеческие существа стали архитекторами жизни. Биоинженеры смогут создать десятки тысяч новых организмов в течение нескольких ближайших лет. Перспективы устрашающие. Генная инженерия поднимает беспрецедентные этические и социальные вопросы, а также ставит под угрозу благополучие окружающей среды, здоровья людей и животных и будущее сельского хозяйства. Далее описываются лишь некоторые из проблем, связанных с генной инженерией:

Генетически измененные организмы, которые сбегут или будут выпущены из лаборатории, могут вызвать разрушение окружающей среды. Генетически созданные «биологические загрязнители» потенциально могут быть более деструктивными, чем даже химические загрязняющие вещества. Поскольку они живые, генетически измененные продукты по своему существу более непредсказуемы, чем химические, – они могут размножаться, мигрировать и мутировать. Стоит однажды выпустить эти генетически измененные организмы в среду, их уже будет практически невозможно вернуть обратно в лабораторию. Многие ученые предупреждают, что выпуск таких организмов во внешнюю среду может привести к необратимым разрушительным последствиям для экологии.

Генетические изменения, вероятно, приведут к непредвиденным результатам и опасным сюрпризам. Биотехнология – это неточная наука, и ученые никогда не смогут гарантировать успех на 100 процентов. В практике случались серьезные случаи. Исследователи, проводившие эксперименты в университете штата Мичиган, недавно выяснили, что генетически измененные растения, устойчивые перед вирусами, могут вызывать мутацию вирусов в новые более опасные формы или формы, которые способны атаковать другие виды растений. Иные устрашающие сценарии: инородные гены генетически измененных растений могут быть перенесены вместе с пыльцой, насекомыми, ветром или дождем на другие культуры, а также дикие и сорные растения. Может случиться беда, если свойства генетически измененных культур, такие как устойчивость перед вирусами или насекомыми, получат сорняки, например. Генетически измененные растения способны производить токсины и другие вещества, которые могут нанести вред птицам и другим животным. Генная инженерия растений и животных практически определенно подвергнет опасности виды и уменьшит биологическое разнообразие. В силу своих «превосходных» генов, некоторые из ГИ растений и животных неизбежно выйдут из-под контроля, покоряя дикие виды. Так уже происходило при ввозе в страну экзотических видов, например, в Северной Америке возникали проблемы с голландской болезнью вязов и пуерарией вьющейся. Что случится с дикими видами, например, когда ученые выпустят в среду карпа, лосося или форель в два раза большую и съедающую в два раза больше еды, чем ее дикие сородичи? Другая опасность лежит в создании новых видов сельскохозяйственных культур и домашних животных. После того, как ученые создадут то, что будет названо «идеальным помидором» или «идеальной курицей», их начнут воспроизводить в больших количествах; «менее желательные» виды будут оставлены у обочины. «Идеальные» животные и растения будут затем клонированы (воспроизведены как точные генетические копии), еще больше сокращая базу доступных генов на планете.

Генетическое изменение сельскохозяйственных культур и животных может спровоцировать развитие токсических и аллергических реакций у людей. Человек, имеющий аллергию на орехи или моллюски, например, не будет иметь возможности узнать, не был ли помидор или другой продукт изменен с добавлением белков продуктов-аллергенов, а потому потребление данных ГИ продуктов может привести к фатальным последствиям. Кроме того, генные инженеры могут взять белок бактерии, найденной в почве, океане – где угодно – и добавить его в человеческую еду. Такие вещества никогда не добавлялись в пищу ранее, поэтому сведений об их токсичности и аллергенности нет.

Известны случаи, когда генетически измененные продукты приносили вред людям. В 1989 и 1990 годах генетически созданный Л-триптофан, распространенная пищевая добавка, убил более 30 американцев и надолго вывел из строя более 5000 человек, поразив потенциально смертельным и болезненным заболеванием крови, синдромом эозинофилии-миалгии, прежде чем был запрещен. Производитель «Showa Denko K.K.», третья по величине в Японии химическая компания, использовала генетически измененную бактерию для создания этой добавки, продававшейся без рецепта. Считается, что бактерия как-то была заражена в процессе рекомбинации ДНК. На продуктах не ставится указаний о том, что он был генетически изменен. Патентование ГИ-продуктов и широкое распространение производства продуктов биотехнологий уничтожит фермерство, каким оно известно с древнейших времен. Если эту тенденцию не остановить, патентование трансгенных растений и животных мясо-молочной отрасли вскоре приведет к развитию земледелия на основе аренды, когда фермеры будут брать в аренду растения и животных у биотехнологических конгломератов и платить за семена и потомство. В конечном счете, в течение следующих нескольких десятилетий, сельское хозяйство будет стерто с лица земли и перейдет под контроль промышленных фабрик биосинтеза, контролируемых химическими и биотехнологическими компаниями. Никогда больше люди не насладятся натуральными свежими продуктами. Сотни миллионов фермеров и других работников по всему миру потеряют свои заработки. Устойчивая сельскохозяйственная система будет разрушена.

Генетическое изменение и патентование животных снизит статус живых существ до производственных продуктов и приведет к еще большим страданиям. В январе 1994 года было объявлено о том, что выяснена полная карта генома коров и свиней, что предшествовало дальнейшему развитию экспериментов над животными. В дополнение к изначальной жестокости подобных экспериментов (ошибочные экземпляры рождались с болезненными дефектами, хромыми, слепыми и т.д.), эти «производственные» создания не имели большего значения для их «создателей», чем механические изобретения. Животные, генетически созданные для использования в лабораториях, такие как печально известная «гарвардская мышь», которая имела человеческий ген, вызывающий рак, который передавался всем последующим поколениям, были созданы для страданий. Чисто редукционистская наука, биотехнология снижает значимость жизни до частиц информации (генетического кода), которые можно разбирать и собирать так, как заблагорассудится. Лишенные своей неповторимости и сокровенности, животные, которые являются просто объектами для своих «изобретателей», будут рассматриваться как таковые. В настоящее время ожидают одобрения патенты на более 200 генетически измененных «причудливых» животных.

Никогда генетически созданные организмы не проверялись адекватно или должным образом на предмет безопасности. На сегодняшний день не существует соответствующей правительственной организации, созданной для работы с этим радикально новым классом существ, потенциально несущих огромные угрозы здоровью и окружающей среде. Политика Управления по контролю за пищевыми продуктами и лекарственными средствами США в отношении генетически измененных продуктов иллюстрирует проблему. В мае 1992 года в этой стране была разработана новая политика в отношении биотехнологических продуктов: генетически измененные продукты не будут рассматриваться отдельно от натуральных; они не будут тестироваться на безопасность; они не будут содержать этикетки, указывающей, что они были генетически изменены; американское правительство не будет отслеживать ГИ-продукты. В результате ни правительство, ни потребители не будут знать, какие цельные или обработанные продукты были генетически изменены. Вегетарианцы и люди, исключающие определенные продукты из рациона в связи с религиозными убеждениями, столкнутся с перспективной невольного потребления овощей и фруктов, содержащих генетический материал животных и даже людей. А последствия для здоровья будут выяснены только путем проб и ошибок – потребителями.

Патентуя открытые ими гены и живые организмы, небольшая корпоративная элита вскоре будет контролировать все генетическое наследие планеты. Ученые, которые «открывают» гены и способы манипулирования ими, могут получать патенты – и, таким образом, право владения – не только на технологии генетических изменений, но и на сами гены. Химические, фармацевтические и биотехнологолические компании, такие как «DuPont», «Upjohn», «Bayer», «Dow», «Monsanto», «Cib-Geigy» и «Rhone-Poulenc», срочно пытаются определить и запатентовать гены растений, животных и людей, чтобы совершить полный захват отраслей сельского хозяйства, животноводства и производства пищевых продуктов. Это те же компании, что когда-то обещали беззаботную жизнь с пестицидами и пластиком. Можно ли доверять их планам на будущее?

Изучение генома человека может привести к рассекречиванию личной информации и новым уровням дискриминации. Некоторым людям уже отказывают в медицинском страховании на основании «плохих» генов. Не будут ли требовать генного сканирования работодатели, и не откажут ли они своим работникам от места на основании его результатов? Не получит ли правительство доступ к нашим личным генетическим профилям? Легко можно представить новый уровень дискриминации, направленной против тех, чьи генетически профили указывают, что они, например, менее умны или предрасположены к появлению определенных заболеваний.

Генная инженерия уже использовалась для «улучшения» человеческой расы,– практика под названием евгеника. Генное сканирование уже позволяет нам выяснять, не носит ли плод гены определенных наследственных заболеваний. Не начнем ли мы в ближайшем будущем избавляться от плодов на основании не угрожающих жизни дефектов, таких как миопия, предрасположенность к гомосексуальности, или по чисто косметическим причинам? Исследователи Университета Пенсильвании подали заявку на патент ГИ клеток спермы животных с тем, чтобы свойства, передаваемые одним поколением следующему, можно было изменять; это предполагает, что подобное возможно и в отношении людей. Переход от животной евгеники к человеческой – всего лишь один небольшой шаг. Все хотят лучшего для своих детей, но где мы остановимся? По неосторожности мы вскоре можем повторить усилия нацистов по созданию «совершенной» расы.

Вооруженные силы США создают арсенал генетически измененного биологического оружия. Хотя создание биологического оружия для наступления было объявлено незаконным в соответствии с международными договорами, США продолжает разрабатывать такое оружие в целях защиты. Однако генетически измененные биологические агенты идентичны, используются ли они для защиты или нападения. Области исследования подобного оружия включают следующие: бактерия, устойчивая ко всем антибиотикам; более устойчивые и опасные бактерии и вирусы, которые живут дольше и убивают быстрее, а также новые организмы, которые могут аннулировать действие вакцины или снизить природную сопротивляемость людей и растений. Также исследовались возможности разработки патогенных микроорганизмов, которые могут нарушать гормональный баланс человека достаточно, чтобы вызывать смерть, и трансформации безвредных бактерий (таких как те, что имеются в кишечнике человека) в убийц. Некоторые специалисты уверены, что также разрабатываются ГИ патогенные микроорганизмы, которые нацелены на определенные расовые группы.

Не все ученые оптимистично настроены в отношении генной инженерии. Среди скептиков Ирвин Чаргофф, выдающийся биохимик, которого часто называют отцом молекулярной биологии. Он предупреждает, что не все инновации приводят к «прогрессу». Чаргофф однажды назвал генную инженерию «молекулярным Аушвицем» и предупредил, что технология генной инженерии ставит мир под большую угрозу, чем приход ядерной технологии. «Я чувствую, что наука преступила барьер, который должен оставаться ненарушенным», – писал он в своей автобиографии. Отмечая «ужасающую необратимость» планируемых экспериментов генной инженерии, Чаргофф предупреждал, что «… вы не можете отменить новую форму жизни… она вас переживет, и ваших детей, и детей ваших детей. Необратимая атака на биосферу – это что-то столь неслыханное, столь невообразимое для предыдущих поколений, что я могу лишь пожелать, чтобы я не был в этом повинен».

5. Заключение

Общественное мнение. Несмотря на явную пользу от генетических исследований и экспериментов, само понятие «генная инженерия» породило различные подозрения и страхи, стало предметом озабоченности и даже политических споров. Многие опасаются, например, что какой-нибудь вирус, вызывающий рак у человека, будет введен в бактерию, обычно живущую в теле или на коже человека, и тогда эта бактерия будет вызывать рак. Возможно также, что плазмиду, несущую ген устойчивости к лекарственным препаратам, введут в пневмококк, в результате чего пневмококк станет устойчивым к антибиотикам и пневмония не будет поддаваться лечению. Такого рода опасности, несомненно, существуют. Генетические исследования ведутся серьезными и ответственными учеными, а методы, позволяющие свести к минимуму возможность случайного распространения потенциально опасных микробов, все время совершенствуются. Оценивая возможные опасности, которые эти исследования в себе таят, следует сопоставлять их с подлинными трагедиями, вызванными недоеданием и болезнями, губящими и калечащими людей.

Генная инженерия является одной из наиболее активно развивающихся и перспективных технологий нашего времени, которая в будущем сможет решить многие вопросы медицины и не только. Мое личное мнение по большинству спорных вопросов генной инженерии склоняется в сторону разрешения исследований и применения этих технологий.

На мой взгляд, генетическая модификация организмов при разумном контроле над этим процессом, способна решить некоторые серьезные проблемы современности. В частности, применения генной модификации в медицине с целью лечения различных заболеваний мне кажется положительным явлением, не вызывающим никаких нареканий на данном этапе развития науки.

Что касается применения генетической модификации в сельском хозяйстве и распространении генно-модифицированных продуктов, то, на мой взгляд, их гипотетическая опасность для здоровья человека фактически не подтверждается. Мне кажется, что если стандартные исследования по безопасности этих продуктов говорят о том, что их использование возможно, то они не нуждаются в каких-либо дополнительных исследованиях. ГМО в данном случае нужно рассматривать как некий новый вид растения или продукта и при условии, что он отвечает всем стандартным нормам безопасности продуктов питания, его использование следует однозначно разрешать. Также я разделяю ту точку зрения, что ГМП ввиду особого контроля к ним, улучшения их свойств на генном уровне и отсутствия необходимости применения различных вредных для человека удобрений при выращивании могут быть даже более безопасными, чем обычные продукты сельского хозяйства.

Вопросы клонирования представляют серьезные этические проблемы, когда вопрос заходит о клонировании человека. На данном этапе доводы о необходимости репродуктивного клонирования людей, на мой взгляд, недостаточно убедительны, а потому запрет на репродуктивное клонирование мне кажется обоснованным. Однако это не означает, что все исследования в данной области следует прекратить, ведь в том случае, если наука сможет дать большую вероятность выживания клонов, а общественность сможет решить другие спорные вопросы, репродуктивное клонирование вполне может быть разрешено.

Вопрос терапевтического клонирования также достаточно сложен, ведь для получения стволовых клеток необходимо остановить развитие эмбриона, который в принципе может развиться в ребенка. Мне кажется, что эта этическая проблема в некотором роде близка проблеме абортов. Однако с учетом всех обстоятельств, я склонен выступать за разрешение терапевтического клонирования, т.к. это способно спасти жизнь человека ценой возможной жизни, прерванной на этапе зарождения.

Что же касается самого изучения и исследования вопросов клонирования, в частности вопросов репродуктивного клонирования животных, на мой взгляд, оно должно быть разрешено, так как запрещать его неразумно в контексте использования животных в любых других видах лабораторных исследований.

Список используемой литературы.

1. Бочкарёв А. И. Концепции современного естествознания: учебник для студентов вузов / А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов; под ред. проф. А. И. Бочкарёва. – Тольятти: ТГУС, 2008. – 386 с.

2. Г96Гусейханов М. К., Раджабов О. Р. Концепции современного естествознания: Учебник. - 6-е изд., перераб. и доп. - М.: Издательско-торговая корпорация «Дашков и К°», 2007. - 540 с.

Данный справочник содержит весь теоретический материал по курсу биологии, необходимый для сдачи ЕГЭ. Он включает в себя все элементы содержания, проверяемые контрольно-измерительными материалами, и помогает обобщить и систематизировать знания и умения за курс средней (полной) школы.

Теоретический материал изложен в краткой, доступной форме. Каждый раздел сопровождается примерами тестовых заданий, позволяющими проверить свои знания и степень подготовленности к аттестационному экзамену. Практические задания соответствуют формату ЕГЭ. В конце пособия приводятся ответы к тестам, которые помогут школьникам и абитуриентам проверить себя и восполнить имеющиеся пробелы.

Пособие адресовано школьникам, абитуриентам и учителям.

Клеточная инженерия – это направление в науке и селекционной практике, которое изучает методы гибридизации соматических клеток, принадлежащих разным видам, возможности клонирования тканей или целых организмов из отдельных клеток.

Одним из распространенных методов селекции растений является метод гаплоидов – получения полноценных гаплоидных растений из спермиев или яйцеклеток.

Получены гибридные клетки, совмещающие свойства лимфоцитов крови и опухолевых, активно размножающихся клеток. Это позволяет быстро и в нужных количествах получать антитела.

Культура тканей – применяется для получения в лабораторных условиях растительных или животных тканей, а иногда и целых организмов. В растениеводстве используется для ускоренного получения чистых диплоидных линий после обработки исходных форм колхицином.

Генная инженерия – искусственное, целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами.

Основной метод – выделение необходимых генов, их клонирование и введение в новую генетическую среду. Метод включает следующие этапы работы:

– выделение гена его объединение с молекулой ДНК клетки, которая сможет воспроизводить донорский ген в другой клетке (включение в плазмиду);

– введение плазмиды в геном бактериальной клетки – реципиента;

– отбор необходимых бактериальных клеток для практического использования;

– исследования в области генной инженерии распространяются не только на микроорганизмы, но и на человека. Они особенно актуальны при лечении болезней, связанных с нарушениями в иммунной системе, в системе свертывания крови, в онкологии .

Клонирование . С биологической точки зрения клонирование – это вегетативное размножение растений и животных, потомство которых несет наследственную информацию, идентичную родительской. В природе клонируются растения, грибы, простейшие животные , т.е. организмы, размножающиеся вегетативным путем. В последние десятилетия этот термин стали употреблять при пересадки ядер одного организма в яйцеклетку другого. Примером такого клонирования стала известная овечка Долли, полученная в Англии в 1997 г.

Биотехнология – процесс использования живых организмов и биологических процессов в производстве лекарств, удобрений, средств биологической защиты растений; для биологической очистки сточных вод, для биологической добычи ценных металлов из морской воды и т.д.

Включение в геном кишечной палочки гена, ответственного за образование у человека инсулина позволило наладить промышленное получение этого гормона.

В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока;

с помощью генетически измененного вируса создать вакцину против герпеса у свиней. С помощью вновь синтезированных генов, введенных в бактерии, получают ряд важнейших биологически активных веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии.

По мере развития генной и клеточной инженерии в обществе возникает все больше и больше беспокойства по поводу возможных манипуляций с генетическим материалом. Некоторые опасения теоретически оправданы. Например, нельзя исключить пересадок генов повышающих устойчивость к антибиотикам некоторых бактерий, создания новых форм пищевых продуктов, однако эти работы контролируются государствами и обществом. В любом случае опасность от болезней, недоедания и других потрясений значительно выше, чем от генетических исследований.

Перспективы генной инженерии и биотехнологии:

– создание организмов, полезных для человека;

– получение новых лекарственных препаратов;

– коррекция и исправление генетических патологий.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Производством лекарств, гормонов и других биологических веществ занимается такое направление, как

1) генная инженерия

2) биотехнологическое производство

3) сельскохозяйственная промышленность

4) агрономия

А2. В каком случае метод культуры тканей окажется наиболее полезным?

1) при получении гибрида яблони и груши

2) при выведении чистых линий гладкосемянного гороха

3) при необходимости пересадить кожу человеку при ожоге

4) при получении полиплоидных форм капусты и редьки

А3. Для того чтобы искусственно получать человеческий инсулин методами генной инженерии в промышленных масштабах, необходимо

1) ввести ген, отвечающий за синтез инсулина в бактерии, которые начнут синтезировать человеческий инсулин

2) ввести бактериальный инсулин в организм человека

3) искусственно синтезировать инсулин в биохимической лаборатории

4) выращивать культуру клеток поджелудочной железы человека, отвечающей за синтез инсулина.

Часть С

С1. Почему в обществе многие боятся трансгенных продуктов?

    » Оглавление книги

    • 3.2. Воспроизведение организмов, его значение. Способы размножения, сходство и отличие полового и бесполого размножения. Использование полового и бесполого размножения в практической деятельности человека. Роль мейоза и оплодотворения в обеспечении постоянства числа хромосом в поколениях. Применение искусственного оплодотворения у растений и животных

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия

Генная инженерия — совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными , бактерии и грибы — трансформированными . Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста — соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Процесс создания трансформированных бактерий включает в себя следующие этапы.

  1. Рестрикция — «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов — рестриктаз .
  2. Создание вектора — специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов — лигаз. Вектор должен содержать все необходимое для управления работой этого гена — промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток.
  3. Трансформация — внедрение вектора в бактерию.
  4. Скрининг — отбор тех бактерий, в которых внедренные гены успешно работают.
  5. Клонирование трансформированных бактерий.

1 — клетка с исходной плазмидой; 2 — выделенная плазмида; 3 — создание вектора; 4 — рекомбинантная плазмида (вектор); 5 — клетка с рекомбинантной плазмидой.

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

Хромосомная инженерия

Хромосомная инженерия — совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии ), или замещении одной пары гомологичных хромосом на другую (замещенные линии ). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2-3 года вместо 6-8-летнего инбридинга.

Сюда же можно отнести и метод получения полиплоидных растений (см. Лекция 23 «Селекция растений»).

Клеточная инженерия

Клеточная инженерия — конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культуры . Клетки растений обладают еще и свойством тотипотентности , то есть при определенных условиях они способны сформировать полноценное растение. Следовательно, можно размножать растения в пробирках, помещая клетки в определенные питательные среды. Это особенно актуально в отношении редких или ценных растений.

С помощью клеточных культур можно получать ценные биологически активные вещества (культура клеток женьшеня). Получение и изучение гибридных клеток позволяет решить многие вопросы теоретической биологии (механизмы клеточной дифференцировки, клеточного размножения и др.). Клетки, полученные в результате слияния протопластов соматических клеток, относящихся к разным видам (картофеля и томата, яблони и вишни и др.), являются основой для создания новых форм растений. В биотехнологии для получения моноклональных антител используются гибридомы — гибрид лимфоцитов с раковыми клетками. Гибридомы нарабатывают антитела, как лимфоциты, и обладают возможностью неограниченного размножения в культуре, как раковые клетки.

Метод пересадки ядер соматических клеток в яйцеклетки позволяет получить генетическую копию животного, то есть делает возможным клонирование животных. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Метод слияния эмбрионов на ранних стадиях делает возможным создание химерных животных. Таким способом были получены химерные мыши (слияние эмбрионов белых и черных мышей), химерное животное овца-коза.

Для лечения многих болезней необходимы различные биологически активные вещества. При выделении их из тканей человека возникает опасность загрязнения полученного материала различными вирусами (гепатита В, иммунодефицита человека и др.). Кроме того, эти вещества производятся в небольших количествах и являются дорогостоящими. Биологически активные вещества животного происхождения низкоэффективны из-за несовместимости с иммунной системой больного человека. Только развитие новой отрасли генной инженерии помогло обеспечить получение чистых биологически активных веществ в больших количествах по более низкой цене.

Генная инженерия - это создание гибридных, рекомбинантных молекул ДНК, а стало быть, и организмов с новыми признаками. Для этого необходимо выделить ген из какого-либо организма или искусственно синтезировать его, клонировать (размножить) и перенести в другой организм.

Инструментами генной инженерии являются ферменты: рестриктазы (разрезающие молекулу ДНК) и лигазы (сшивающие ее). В качестве векторов-переносчиков используются вирусы.

С помощью генной инженерии созданы штаммы кишечных палочек, в которые встроены гены человеческого инсулина (необходимого для лечения сахарного диабета), интерферона (противовирусного препарата), соматотропина (гормона роста).

С помощью генной инженерии созданы дрожжевые клетки, продуцирующие человеческий инсулин. Биосинтетический метод производства человеческого инсулина с помощью дрожжевых клеток широко используется в фармацевтическом производстве (в Дании, Югославии, США, Германии и других странах).

В настоящее время ученые разных стран работают над получением с помощью генной инженерии ряда других необходимых биологически активных веществ, вакцины против гепатита В, активатора профибринолизина (противосвертывающий препарат), интерлейкина-2 (иммуномодулятор) и др.

В клетки животных чужеродные гены вводят в виде отдельных молекул ДНК или в составе векторов-вирусов, способных вносить в геном клетки чужую ДНК. Обычно применяют два метода:

1) ДНК добавляют в среду инкубации клеток;

2) производят микроинъекции ДНК непосредственно в ядро (что более эффективно).

Первоочередными задачами генной инженерии у человека являются создание банков генов человека для их изучения и поиск путей генотерапии, то есть замены мутантных генов нормальными аллелями.

Клеточная инженерия - это метод конструирования клеток нового типа на основе их культивирования, гибридизации или реконструкции. При гибридизации искусственно объединяются целые клетки (иногда далеких видов) с образованием гибридной клетки. Клеточная реконструкция - это создание жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.).

Изучение гибридных клеток позволяет решать многие проблемы биологии и медицины. Так, например, биотехнология использует гибридомы. Гибридома - это клеточный гибрид, получаемый слиянием нормального лимфоцита и опухолевой клетки. Она обладает способностью к синтезу моноклональных (однородных) антител желаемой специфичности (свойство лимфоцита) и к неограниченному росту в искусственной среде (свойство опухолевой клетки).

Биотехнология - это производство продуктов и материалов, необходимых для человека, с помощью биологических объектов.

Термин «биотехнология» получил распространение в середине 70-х годов XX в., хотя отдельные отрасли биотехнологии известны давно и основаны на применении различных микроорганизмов: хлебопечение, виноделие, пивоварение, сыроварение. Достижения генетики создали большие дополнительные возможности для развития биотехнологии.

В середине XX в. и во второй его половине, используя индуцированный мутагенез, были получены антибиотики (пенициллин, стрептомицин, эритромицин и др.) - с помощью микробов; фермент амилаза - с помощью сенной палочки, аминокислоты - с помощью кишечной палочки; молочная кислота - с помощью молочно-кислых бактерий; лимонная кислота - с помощью аспергилловой плесени; витамины группы В - с помощью дрожжей.

Загрузка...
Top