Уравнения майера. Теплоемкость

Основой описания процессов в элементах пневмоавтоматики является первый закон термодинамики. Первый закон термодинамики является частным случаем закона сохранения энергии. Этот закон утверждает, что в изолированной системе сумма всех видов энергий является величиной постоянной.

Соотношение между теплотой и работой установлено Робертом Майером в 1842 году

В системе СИ тепловой эквивалент работы А = 1.

Немецкий врач и физик Юлиус Роберт фон Майер родился в Хейльбронне в семье аптекаря. Получив медицинское образование, он несколько месяцев работал в клиниках Парижа, после чего отправился в качестве корабельного врача на о. Ява. В течение годичного плавания (1840–1841 гг.) врач Майер пришел к своему великому открытию. По его словам, на этот вывод его натолкнули наблюдения над изменением цвета крови у людей в тропиках. Производя многочисленные кровопускания на рейде в Батавии, Майер заметил, что «кровь, выпускаемая из ручной вены, отличалась такой необыкновенной краснотой, что, судя по цвету, я мог бы думать, что я попал на артерию». Он сделал отсюда вывод, что «температурная разница между собственным теплом организма и теплом окружающей среды должна находиться в количественном соотношении с разницей в цвете обоих видов крови, т.е. артериальной и венозной... Эта разница в цвете является выражением размера потребления кислорода или силы процесса сгорания, происходящего в организме».

Во времена Майера было распространено учение о жизненной силе организма (витализм): живой организм действует благодаря наличию в нём особой жизненной силы. Тем самым физиологические процессы исключались из сферы физических и химических законов и обусловливались таинственной жизненной силой. Майер своим наблюдением показал, что организм управляется естественными физико-химическими законами, и прежде всего законом сохранения и превращения энергии. Вернувшись из путешествия, он тут же написал статью под заглавием «О количественном и качественном определении сил», которую направил 16 июня 1841 г. в журнал «Анналы...» И. Поггендорфу. В этой работе Майера, несмотря на некоторые несообразности, содержится вполне определённая и ясная формулировка закона сохранения и превращения силы, т. е. энергии. Поггендорф, однако, не напечатал статью и не вернул её автору, она пролежала в его письменном столе 36 лет, где и была обнаружена после смерти Поггендорфа. В 1842 г. Майер публикует другую статью в журнале «Анналы химии и фармации».

Эта работа Майера по праву считается основополагающей в истории закона сохранения и превращения энергии. Особенно важна идея Майера о качественном превращении сил (энергии) при их количественном сохранении. Майер подробно анализирует всевозможные формы превращения энергии в брошюре «Органическое движение в его связи с обменом вещества», вышедшей в Гейльбронне в 1845 г. Майер сначала думал опубликовать свою статью в тех же «Анналах химии и фармации», но их редактор Ю. Либих, сославшись на перегрузку журнала химическими статьями, посоветовал переслать статью в «Анналы» Поггендорфа. Майер, понимая, что Поггендорф поступит с ней так же, как со статьей 1841 г., решил опубликовать статью брошюрой за свой счет.


В своей брошюре Майер подробно подсчитывает механический эквивалент теплоты; он приводит данные по теплотворной способности углерода и обращает внимание на низкий коэффициент полезного действия тепловых машин, максимальное значение которого в современных ему машинах составляло 5–6%, а в локомотивах не достигало и одного процента. Рассматривая электризацию трением и действие электрофора, Майер указывает, что здесь «механический эффект превращается в электричество». Он делает вывод: затрата механического эффекта вызывает как электрическое, так и магнетическое напряжение. В заключение своего анализа Майер останавливается на «химической силе». Интересно, что вопрос о химической энергии у него сочетается с вопросом об энергетике солнечной системы. Он указывает, что поток солнечной энергии (силы), являющийся и на нашу Землю, «есть та непрестанно заводящаяся пружина, которая поддерживает в состоянии движения механизм всех происходящих на Земле деятельностей».

Майер закончил развитие своих идей к 1848 г., когда в брошюре «Динамика неба в популярном изложении» он поставил и сделал попытку решить важнейшую проблему об источнике солнечной энергии. Майер понял, что химическая энергия недостаточна для восполнения огромных расходов энергии Солнца. Однако из других источников энергии в его время была известна только механическая энергия. И Майер сделал вывод, что теплота Солнца восполняется бомбардировкой его метеоритами, падающими на него со всех сторон непрерывно из окружающего пространства. В работе 1851 г. «Замечания о механическом эквиваленте теплоты» Майер излагает сжато и популярно свои идеи о сохранении и превращении силы.

Работы Майера долго оставались незамеченными: первая статья не была опубликована вообще, вторая увидела свет в не читаемом физиками химическом журнале, третья – в частной брошюре. Вполне понятно, что открытие Майера не дошло до физиков, и закон сохранения энергии открывали независимо от него и другими путями другие авторы, прежде всего Дж. Джоуль и Г. Гельмгольц. Майер оказался втянутым в тягостно отразившийся на нём спор о приоритете; лишь в 1862 г. Р. Клаузиус и Дж. Тиндаль обратили внимание на исследования Майера. Оценка заслуг Майера в создании механической теории тепла вызвала в своё время ожесточённую полемику между Клаузиусом, Тиндалем, Джоулем и Дюрингом.

Майер, вынужденный отстаивать свой приоритет в открытии закона сохранения энергии, делал это в спокойном и достойном тоне, скрывая ту глубокую душевную травму, которая была нанесена ему «мелкой завистью цеховых ученых» и «невежеством окружающей среды», по словам К. А. Тимирязева. Достаточно сказать, что в 1850 г. он пытался покончить жизнь самоубийством, выбросившись из окна, и остался на всю жизнь хромым. Его травили в газетах, обвиняли скромного и честного учёного в мании величия, подвергли принудительному «лечению» в психиатрической больнице.

Майер умер 20 марта 1878 г. Незадолго до смерти, в 1874 г. вышло собрание его трудов по закону сохранения и превращения энергии под заглавием «Механика тепла». В 1876 г. вышли его последние сочинения «О торричеллиевой пустоте» и «Об освобождении сил». (См. далее).

Первый закон термодинамики утверждает, что теплота dq, подведенная к ТДС идет на совершение работы dl этой системой и на изменение внутренней энергии du ТДС.

dq = du + dl.

Под внутренней энергией термодинамической системы понимается вся энергия заключенная в этой системе. Эту энергию определяет энергия поступательного, вращательного и колебательного движения молекул, а также энергия взаимодействия молекул и атомов. Абсолютное значение внутренней энергии ТДС методами термодинамики не определяется. В технической термодинамике принято считать внутреннюю энергию ТДС при нулевой температуре равной нулю и рассматривать приращение внутренней энергии относительно этого уровня.

,

где - универсальная газовая постоянная , - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

Уравнение Майера вытекает из первого начала термодинамики , примененного к изобарическому процессу в идеальном газе:

в рассматриваемом случае:

Очевидно, уравнение Майера показывает, что различие теплоемкостей газа равно работе, совершаемой одним молем идеального газа при изменении его температуры на 1 , и разъясняет смысл универсальной газовой постоянной R - механический эквивалент теплоты.


Wikimedia Foundation . 2010 .

Смотреть что такое "Формула Майера" в других словарях:

    Для любого идеального газа справедливо соотношение Майера: , где универсальная газовая постоянная, молярная теплоёмкость при постоянном давлении, молярная теплоёмкость при постоянном объёме. Уравнение Майера вытекает из… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Майер. Юлиус Роберт фон Майер нем. Julius Robert von Mayer … Википедия

    Фон Майер, Юлиус Роберт В Википедии есть статьи о других людях с фамилией Майер. Роберт Майер Юлиус Роберт фон Майер (нем. Julius Robert von Mayer; … Википедия

    ОБЛИТЕРАЦИЯ - (лат. obliteratio уничтожение), термин, употребляемый для обозначений закрытия, уничтожения той или иной полости или просвета посредством разрастания^ ткани, идущего со стороны стенок данного полостного образования. Указанное разрастание чаще… … Большая медицинская энциклопедия

    Сущность ее может быть выражена в немногих словах. Согласно этой теории, газы состоят из огромного числа отдельных весьма малых частиц, двигающихся по всем возможным направлениям и со всеми возможными скоростями; частицы эти связаны между собой… …

    Эта статья о веществе; о лекарственном средстве см.: Морфин (лекарственное средство). Запрос «Морфий» перенаправляется сюда; см. также другие значения. Морфин … Википедия

    Тела, характеризующиеся стремлением наполнять любое пространство и лишенные собственной формы. Учение о Г. представляет блестящую страницу современного естествознания. Казавшаяся некогда неуловимой форма тела, по понятиям древних занимавшего… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Характеризующиеся стремлением наполнять любое пространство и лишенные собственной формы. Учение о Г. представляет блестящую страницу современного естествознания. Казавшаяся некогда неуловимой форма тела, по понятиям древних занимавшего среднее… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Раздел прикладной физики или теоретической теплотехники, в котором исследуется превращение движения в теплоту и наоборот. В термодинамике рассматриваются не только вопросы распространения теплоты, но и физические и химические изменения, связанные … Энциклопедия Кольера

    Англ. FIFA World Cup … Википедия

ОПРЕДЕЛЕНИЕ

Уравнение Майера связывает между собой молярную теплоёмкость для идеального газа в изохорном процессе, и молярную теплоёмкость при в изобарном процессе.

Именно в этом простом уравнении заключена физическая суть величины – универсальной газовой постоянной, равной 8,31 Дж/(моль К).

Запись уравнения Майера

Уравнение Майера записывают в виде:

В нём с p – молярная теплоёмкость при постоянном , а с v соответственно – в условиях постоянного объема.

Молярная теплоемкость указывает, сколько теплоты в Джоулях следует подводить к одному молю газа, чтобы нагреть его на 1 Кельвин. Молярную теплоемкость изохорного процесса можно определить по следующей формуле:

где i – количество степеней свободы для молекулы газа. С учётом уравнения Майера, получим формулу для расчёта изобарной молярной теплоемкости:

Расчеты с использованием уравнения Майера

В практических расчётах часто используют удельную массовую теплоемкость, и как раз она обычно приводится в таблицах теплофизических величин. Умножив молярную теплоёмкость газа на его молярную массу, мы получим удельную массовую теплоемкость:

Зачем вообще понадобилось разграничивать изохорную и изобарную теплоемкости?


При изобарном процессе (процессе с постоянным давлением) первый закон термодинамики представляется формулой:

где — количество теплоты, подведенное к газу, – изменение газа, – расширения, которую совершил газ.

А это значит, что теплота, подведённая к газу в изобарном процессе, будет потрачена на изменение его внутренней энергии и работу по его расширению.

Если же газ закрыть в замкнутом объёме (изохорный процесс), то работа по его расширению выполняться не будет (), и вся подводимая теплота будет потрачена на изменение внутренней энергии:

Если от первого выражения отнять второе, получим:

Таким образом, газовая постоянная R определяет работу, затраченную на расширение одного моля газа при нагреве его на 1 Кельвин при постоянном давлении.

В основном уравнение Майера используется в теории тепловых машин и теплогидравлике для определения теплофизических характеристик рабочих тел. Однако оно нашло применение и в квантовой физике: постоянная Планка, связывающая энергию кванта света с его частотой, была получена с учётом физического смысла универсальной газовой постоянной.

Примеры решения задач

ПРИМЕР 1

Задание Молярная изохорная теплоемкость углекислого газа 28,825 Дж/(моль К). Найти теплоемкость 1 л при постоянном давлении.
Решение Найдём изобарную молярную теплоёмкость по формуле Майера:

Дж/(моль К)

Зная теплоемкость 1 моля углекислого газа, находим изобарную теплоёмкость 1 л углекислого газа:

Ответ 831,8 Дж/К. Значит, чтобы нагреть 1 литр углекислого газа на 1 Кельвин, нужно затратить 831,8 Дж

ПРИМЕР 2

Задание Газовая смесь состоит из 5 кг диоксида СО 2 и 8 кг диазота N 2 . Изобарные молярные теплоемкости указанных газов при температуре Т=298,15 К равны Дж/моль К, Дж/моль К. Рассчитать удельную массовую изохорную теплоемкость смеси , Дж/кг К.


Решение 1) Определим молярные массы каждого из компонентов смеси:

2) Определим количество вещества каждого из компонентов смеси (в молях):

Физический смысл уравнения Майера заключается в том, что при изобарном нагревании газа к нему должна быть подведена большая теплота, чем для такого же изохорного нагревания. Разность теплот должна быть равна работе, совершенной [ азом при изобарном расширении.

10. Круговой процесс. Цикл Карно. Кпд тепловой машины.

Термодинами́ческие ци́клы - круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.

Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла вмеханическую работу.

Цикл Карно́ - идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальнымКПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Коэффицие́нт поле́зного де́йствия (КПД) - характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»). η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

где А - полезная работа, а Q - затраченная работа.

В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.

КПД теплово́го дви́гателя - отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

,

где - количество теплоты, полученное от нагревателя, - количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах горячего источника T 1 и холодного T 2 , обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

.

11. Напряженность и потенциал электрического поля. Закон Кулона.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Потенциал является энергетической характеристикой поля. Он численно равен работе, которую надо затратить против сил электрического поля при перенесении единичного положительного точечного заряда из бесконечности в данную точку поля. Единица измерения потенциала - вольт. С учетом (1.16)

Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

    точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

    их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

    взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

Поместим в одинаковые цилиндры по 1 кг одного и того же газа с одинаковыми параметрами и попытаемся нагреть этот газ до одной и той же температуры Т . В первом цилиндре поршень приварен к стенкам, а во втором – не встречает сопротивления при движении.

Для этого нужно подвести тепло, в первом цилиндре q v , а во втором – q p . При этом q v v (T 2 - T 1 ), q p p (T 2 - T 1 ).

Очевидно, что q p > q v , так как во втором случае теплота будет расходоваться не только на нагрев газа, но и на совершение работы (рис.6).

В данном случае

(см. рис.4). В свою очередь, так как p v= RT ,

Отсюда получим закон Майера:

с p v = R . (37)

В теплотехнических расчетах применяется отношение с p v =к, которое называется показателем адиабаты. Т.к. с p > с v , то к>1 .

С удовлетворительной инженерной точностью применительно ко всем двухатомным газам и воздуху можно считать с p и с v постоянными и равными:

с p = 1,004 кДж/кг град; с v = 0,716 кДж/кг град.

Тогда к =

3.3 Первый закон термодинамики

Согласно закону сохранения и превращения энергии, последняя не может быть ни создана, ни уничтожена, а может быть только преобразована из одного вида в другой при различных физических и химических процессах.

Исторически для измерения отдельных видов энергии принимались различные единицы – калории, кгм, джоули, кВт·ч, л.с.· ч и т.д. В связи с этим превращение энергии происходит не в численно равных, а в эквивалентных отношениях. Из физики известен тепловой эквивалент единицы работы: 1 кгм = 1/427 ккал.

Известны также следующие соотношения: 1 л.с.· ч = 632,3 ккал = 0,735 кВт ч; 1 кВт ч = 860 ккал.

Раньше нами было отмечено, что I закон является частным случаем всеобщего закона сохранения и превращения энергии применительно к процессам, протекающим в термодинамических системах. В общем случае I закон можно сформулировать следующим образом: “Полная энергия изолированной термодинамической системы при любых происходящих в системе процессах остается неизменной”.

Лишь через 100 лет после выводов Ломоносова, после его общей формулировки закона сохранения энергии, в 1842 г. Роберт Майер на основании опытов установил прямую пропорциональность между затраченной теплотой Q и полученной работой L и определил количественное соотношение между ними (если Q и L выражены в Дж):

Q = L . (38)

Раз теплота затрачена – она исчезла, в результате этого получена работа и наоборот. Т.е. применительно к тепловым и механическим явлениям первый закон может быть сформулирован следующим образом:

“Когда исчезает определенное количество тепловой энергии, возникает эквивалентное количество механической энергии (в виде совершенной работы) и наоборот”.

Утверждение первого закона способствовало прекращению попыток построить двигатель, вырабатывающий механическую энергию без потребления какого-либо другого вида энергии (например, выделяющейся при горении топлива) – «perpetuum mobile первого рода».

Уравнение первого закона в данном виде недостаточно полно характеризует баланс энергии в процессах изменения состояния газа. Эти процессы обычно протекают при теплообмене с газом, поэтому рассмотрим составляющие этого теплообмена.

Пусть в цилиндре с подвижным поршнем к 1 кг газа подводится бесконечно малое количество тепла dq . В этом случае увеличится кинетическая энергия поступательного движения молекул, вследствие чего газ совершит работу (выраженную перемещением поршня)

. Кроме этого, изменятся все виды энергии, присущие состоянию молекул – т.е. изменится внутренняя энергия газа. Таким образом, теплота расходуется на изменение внутренней энергии и совершение работы

dq = du + d

Из описания работы тепловых двигателей видно, что в термодинамике рассматривают две резко различающиеся группы физических изменений газа. В поршневых двигателях движение газа не значительно и им можно пренебречь.

В ротативных тепловых двигателях (например, паровая турбина) изменение состояния газа сопровождается интенсивным (с большой скоростью W) движением рабочего тела. Для этого случая первый закон термодинамики запишется в виде

(Например, в ДВС W 1 = 0,1 м/сек, W 2 = 10 м/сек, в ПТУ W 1 = 0,1 м/сек W 2 = 1000 м/сек).

Загрузка...
Top