Транскраниальное ультразвуковое сканирование мозга при болезни паркинсона. Строение и функции среднего мозга Дегенерация нейронов черной субстанции приводит к заболеванию

Черная субстанция (SN ) представляет собой базальные ганглии структура расположен в мозге , который играет важную роль в награде и движении . Черная субстанция является латынь для «черного вещества», что отражает тот факт, что части черной субстанции появляются темнее, чем в соседних районах, в связи с высоким уровнем нейромеланина в дофаминергических нейронах . Он был обнаружен в 1784 году Вик-д"Азир и Самуэль Томас Зёммеринг ссылались на эту структуру в 1791 Болезнь Паркинсона характеризуется потерей дофаминергических нейронов в черной субстанции Парс компактов .

Хотя черная субстанция появляется в виде непрерывной полосы в срезах мозга, анатомические исследования показали, что это на самом деле состоит из двух частей с очень различными соединениями и функцией: Парс компактами (SNPC) и Парс геисиЫа (SNpr). Эта классификация была впервые предложена в 1910 году Sano Рагз компакты служит в основном в качестве выходного сигнала к базовой цепи ганглиев, подача полосатого тела с дофамин. Рагз геисиЫо, хотя, служит в основном в качестве входных данных, передавая сигналы от базальных ганглиев на множество других структур головного мозга.

Состав

Схема основных компонентов базальных ганглиев и их взаимосвязь

Pars геисиЫа

Рагз геисиЫо имеет сильное структурное и функциональное сходство с внутренней частью бледного шара. Два иногда считаются частью одной и той же структуры, разделенные белого вещества внутренней капсулы. Как и у бледного шара, нейроны в Парс геисиЫа в основном ГАМК .

Афферентные связи

Основной вклад в SNpr происходит от стриатума . Он поставляется по двум маршрутам, известных как прямые и косвенные пути . Прямой путь состоит из аксонов из колючих клеток среднего в стриатуме, которые проецируют непосредственно Парс геисиЫа. Непрямой путь состоит из трех звеньев: проекция из полосатых среды шиповатых клеток к внешней части бледного шара ; ГАМКергическая проекция из бледного шара к гипоталамическому ядру и глутаматергическая проекция из субталамического ядра в геисиЫа Парса. Таким образом, активность в полосатом теле с помощью прямого пути оказывает ингибирующее действие на нейронах в (SNpr) , но возбуждающий эффект с помощью косвенного пути. Прямые и косвенные пути происходят из разных подмножеств стриатальных медиальных шиповатых клеток: они плотно переплетены, но выражают различные типы дофаминовых рецепторов, а также показывает другие нейрохимические различия.

Эфферентные связи

Значительные проекции происходят в таламус (вентральные боковые и передние вентральные ядра), двухолмия и других каудальных ядер от геисиЫа Парс (The nigrothalamic путь), которые используют ГАМК как их нейротрансмиттера. Кроме того, эти нейроны образуют до пяти коллатералей, что филиал в обоих рагз компактов и Парс геисиЫа, вероятно, модулирующих активность дофаминергической в ​​Парс компактов.

функция

Черная субстанция является важным игроком в функции мозга, в частности, в движении глаз , планировании двигателя , награды ищущих , обучение и наркомании . Многие из эффектов черной субстанции в опосредуется через стриатуме . Черная субстанция дофаминергический вводится в стриатум через нигростриарный путь тесно связан с функцией стриатума в. Со-зависимость между стриатумом и черной субстанцией можно увидеть следующим образом: при черной субстанции электрический стимулированное, не происходит никакого движения; однако, симптомы нигральной дегенерации в связи с болезнью Паркинсона является горьким примером влияния черной субстанции на движении. В дополнении к стриатуму-опосредованным функциям, черная субстанция также служит в качестве основного источника ГАМКергического торможения в различные мишени головного мозга.

Pars геисиЫа

Парс компактов

Наиболее видным функция Парс компактов управления двигателем , хотя роль черной субстанции в управлении двигателем является косвенной; электрическая стимуляция черной субстанции не приводит к движению, из - за посредничество стриатума в нигральных влияния движения. Рагз компакты посылает возбуждающий вход к стриатуме через D1 путь, который возбуждает и активизирует стриатума, в результате высвобождения ГАМК на бледного шара, чтобы ингибировать его ингибирующее действие на ядра таламуса. Это приводит к тому, что таламокортикальные путям возбуждаться и передает сигналы двигательных нейронов в коре головного мозга, чтобы позволить инициирование движения, который отсутствует при болезни Паркинсона. Однако отсутствие Парс компактов нейронов имеет большое влияние на движение, о чем свидетельствуют симптомы болезни Паркинсона. Двигатель роль Парс компактов может включать в себя точный контроль двигателя, как это было подтверждено в моделях животных с поражением в этой области.

Рагз компакты активно участвуют в рефлексах на раздражители. У приматов, дофаминергические нейроны повышается активность в нигростриатном пути, когда новый стимул представлен. Дофаминергическая активность снижается при повторной презентации стимула. Тем не менее, поведенчески значимый стимул презентации (то есть награды) продолжает активировать дофаминергических нейронов в черной субстанции Парс компактов. Допаминергические проекции из вентральной области покрышки (нижняя часть «среднего мозга» или средний мозг) к префронтальной коры (мезокортикальных пути) и в прилежащем ядре (мезолимбическом пути - «мезо» со ссылкой на «из мезенцефалона» ... в частности, вентральная область покрышки) вовлекаются в награду, удовольствие и аддиктивного поведения. Парс компакты также имеет важное значение в пространственном обучении, наблюдение о своей окружающей среде и местоположении в пространстве. Поражения в Парс компактов приводят к обучению дефициты в повторении одинаковых движений, а некоторые исследования указывают на его причастность к спинной полосатого-зависимого отклика системы на основе памяти, которая функционирует относительно независимо от гиппокампа , который традиционно считается содействовать пространственной или эпизодическое -как памяти функции.

Рагз компакты также играет определенную роль в временных обработках и активируются во время воспроизведения времени. Поражения в Парс компактах приводят к временному дефициту. В последнее время, Рагз компакты подозревался в регуляции цикла сон-бодрствование, что согласуется с такими симптомами, как бессонница и парадоксального сна нарушений, о которых сообщается у пациентов с болезнью Паркинсона . Тем не менее, частичный дефицит дофамина, которые не влияют на управление двигателем может привести к нарушению цикла сна и бодрствования, особенно REM-подобные паттерны нейронной активности во время бодрствования, особенно в гиппокампе .

Клиническое значение

Черной субстанции имеет решающее значение в развитии многих заболеваний и синдромов, в том числе паркинсонизм и болезнь Паркинсона .

болезнь Паркинсона

Болезнь Паркинсона является нейродегенеративным заболеванием , характеризуется, в частности, в связи со смертью дофаминергических нейронов в SNPC. Основные симптомы болезни Паркинсона включают тремор , акинезию , брадикинезию и жесткость. Другие симптомы включают нарушения в осанку, усталость , нарушения сна , и подавленное настроение .

Причина смерти дофаминергических нейронов в SNPC неизвестно. Тем не менее, некоторые вклады в особую чувствительность дофаминергических нейронов в Парс компактов были идентифицированы. С одной стороны, дофаминергические нейроны показывают отклонения в митохондриальном комплексе 1 , вызывая агрегацию альфа-синуклеин ; это может привести к некорректному обращению белка и смерти нейронов. Во- вторых, дофаминергические нейроны в Рагз компакты содержат меньше кальбиндин , чем другие дофаминергических нейронов. Кальбиндин представляет собой белок участвует в кальция транспорта ионов внутри клеток, а избыток кальция в клетках является токсичным. Кальбиндин теория объясняет высокую цитотоксичность Паркинсона в черной субстанции по сравнению с вентральной области покрышки. Независимо от причины гибели нейронов, пластичность Парс компактов очень надежна; Паркинсонизма симптомы не появляются до тех пор, вплоть до 50-80% Парс компактов дофаминергических нейронов не умер. Большая часть этой пластичности происходит на уровне нейрохимических; допамин транспортных системы замедляются, позволяя допамин задерживаться в течение более длительных периодов времени в химических синапсах в стриатуме.

Menke, Jbabdi, Миллер, Matthews и Заря (2010) использовали тензор диффузии, а также отображение T1 для оценки объемных различий в SNPC и SNpr, у участников с болезнью Паркинсона по сравнению со здоровыми лицами. Эти исследователи обнаружили, что участники с болезнью Паркинсона последовательно имели меньшую черную субстанцию, в частности, в SNpr. Поскольку SNpr подключен к заднему таламуса, вентральной таламуса и, в частности, в моторной коре, а также потому, что участники с докладом болезни Паркинсона, имеющей меньшую SNprs (Menke, Jbabdi, Миллер, Matthews и зари, 2010), небольшой объем этого региона может нести ответственность за двигательные нарушения, обнаруженных у пациентов с болезнью Паркинсона. Этот небольшой объем может нести ответственность за слабые и / или менее контролируемые перемещения двигателя, что может привести к тремору часто испытывали те с болезнью Паркинсона.

Шизофрения

Повышенные уровни допамина уже давно участвуют в развитии шизофрении . Тем не менее, большая дискуссия продолжается и по сей день вокруг этой допамина гипотеза шизофрении . Несмотря на споры, антагонисты допамина остаются стандартным и успешное лечение шизофрении. Эти антагонисты включают поколение (типичные) нейролептики первые такие как бутирофеноны , фенотиазины и тиоксантены . Эти препараты были в значительной степени были заменены второго поколения (атипичных антипсихотиков) , такие как клозапин и палиперидона . Следует отметить, что, в общем, эти препараты не действуют на дофамин-продуцирующих нейронов сами по себе, но на рецепторы на постсинаптической нейрон.

Другое, нефармакологическим доказательство в пользу гипотезы дофамина, относящейся к черной субстанции включает структурные изменения в Рагзе компактах, такие как снижение синаптического терминала размера. Другие изменения в черной субстанции включают повышенную экспрессию рецепторов NMDA в черной субстанции, а также снижение Дисбиндина выражения. Увеличение NMDA рецепторы могут указывать на причастность глутамата - допамин взаимодействий при шизофрении. Дисбиндин, который был (спорно) , связанных с шизофренией, может регулировать высвобождение допамина, и низкое выражение Дисбиндин в черной субстанции могут играть важную роль в этиологии шизофрении. Из - за изменения в черной субстанцию в шизофреническом мозге, он может в конечном счете, можно использовать специальные методы визуализации (например, изображений нейромеланина-специфический) , чтобы обнаружить физиологические признаки шизофрении в черной субстанции.

Синдром Деревянный сундук

Вскоре после этого, МПТП был протестирован на животных моделях для его эффективности в индукции болезни Паркинсона (с успехом). МРТР индуцированного акинеза, жесткость, и тремор у приматов, и его нейротоксичность была установлена, что очень специфичен для черной субстанции Парс компактов. У других животных, такие как грызуны, индукция Паркинсона, МРТР является неполной или требует гораздо более высоких и частых доз, чем у приматов. Сегодня МПТП остается самым любимым способом, чтобы вызвать болезнь Паркинсона в животных моделях .

история

Дополнительные изображения

Уверена: Маргарита Васильевна знает об этой болезни значительно больше, чем многие медики. "Муж болен уже одиннадцать лет, - рассказывает она. - Болезнь Паркинсона обычно подкрадывается незаметно. Сначала человек замечает тремор - дрожание рук. И думает, что способен справиться с ним силой воли. Увы... Никто до сих пор точно не знает причин начала болезни.

Ни одно животное не болеет этим недугом - вы не увидите кошку или мышь с дрожащей лапой. А раз неясны истоки болезни - нет и полного излечения. Вы спрашивали о точке отсчета, самом первом "звонке", обозначившем беду. Однажды по дороге на дачу мы заехали на рынок. Помню, выбирали дыню, продавец неожиданно нагрубил. У мужа вдруг задрожала рука - и так дрожит она уже 11 лет. В больнице сказали: "Болезнь Паркинсонизма". Мы открыли медицинские книги, справочники и убедились, что такие больные - долгожители и что болезнь эта неизлечима во всем мире".
В России совсем не много специалистов, близко "знакомых" с недугом, который стал личным врагом для Маргариты Васильевны и ее мужа. Николай Николаевич ЯХНО руководит Клиникой нервных болезней Московской медицинской академии имени И.Сеченова. Проблемой Болезни Паркинсона занимается много лет.
- Николай Николаевич, этот недуг во многом остается загадкой для медицинской науки. Но в последнее время во всем мире ему уделяют большое внимание. С чем связан такой интерес?
- Болезнь Паркинсона - довольно распространенное заболевание. В мире примерно четыре миллиона таких больных, в России от этого заболевания страдают примерно 300 тысяч людей. Действительно, в разных странах ведутся самые активные исследования причин болезни и поиски путей ее лечения. Отчасти это связано с тем, что в обществе растет доля пожилых людей, а значит, и больных становится все больше, ведь чаще всего Болезнью Паркинсона заболевают в возрасте старше 60 лет.
Ее изучение началось в начале ХХ века. Тогда впервые было показано, что происходит при этом недуге. В мозге человека есть определенное ядро нервных клеток. Его называют черной субстанцией, потому что на разрезе оно действительно выглядит как темное пятно. Так вот, при Болезни Паркинсона число этих клеток резко уменьшается. Почему так происходит, понять до конца не удается. Но есть способы хотя бы частично скорректировать дефект. В 50-е годы было обнаружено, что при этой болезни страдает химическое вещество, необходимое для полноценной работы мозга: дофамин. Начался поиск лекарства, способного заменить его. Так появился препарат: леводофа. Когда его создали, газеты писали: "Найден инсулин для паркинсонизма". Казалось, что ситуация похожа на положение с диабетом - ведь инсулины позволяют очень долго и относительно полноценно жить с болезнью. К сожалению, вскоре выяснилось, что это не так. Во-первых, как и у всех лекарств, у леводофы есть побочные эффекты. Но главное, через несколько лет применения лекарства могут возникать очень серьезные осложнения. Сама болезнь порождает множество страданий: и дрожание рук, и замедленность движений, скованность и боли, неустойчивость. Когда мы назначаем препарат, больному становится гораздо лучше. А через несколько лет ему опять плохо, только "по-другому". И эти осложнения лечить еще труднее, чем само заболевание. Как это выглядит? Больной принимает таблетку - и может нормально двигаться. А через полчаса его снова "заковывает". Такое "включение" и "выключение" двигательных возможностей происходит много раз в течение суток.
Слушая профессора, я пыталась представить, во что превращается жизнь человека, внезапно лишенного способности двигаться. Маргарита Васильевна описывает это так:
- После обследований стало ясно, что у мужа поражен участок мозга, который отвечает за все движения, речь, глотание. Только мысль остается по-прежнему ясной. Эта болезнь вырывает из привычной жизни стремительно и, кажется, навсегда. Сначала появился такой тремор, что муж не мог даже расписаться - и вынужден был уволиться с работы. Потом происходила постепенная утрата простейших жизненных навыков: положить платок в карман, застегнуть пуговицу, завязать шнурки, побриться - все это становится невозможным. За семь лет муж раз пять-шесть с трудом выходил из дома. Его мучил тремор всех мышц лица, рук, ног (почти как "ломка" у наркоманов), было трудно ходить, говорить. Все это загоняло в такую депрессию, что не хотелось жить. И так - месяцы, годы... А сейчас мы опять ЖИВЕМ. Я встаю в шесть утра - в его комнате уже свет: сидит и пишет - работает. Однажды муж понял, что способен один выйти на улицу - в тот день он уходил и возвращался раз шесть, все никак не мог поверить в свое счастье.
- Как же случилось это чудо?
- Полтора года назад нам повезло: муж попал в группу больных, которых взяли на испытание препарата "мирапекс". Сначала никто особо не верил в успех лечения. Дозы назначались очень маленькие. И примерно через неделю муж вдруг начал улыбаться, шутить. С этого началось его и наше возвращение к нормальной жизни.
Исстрадавшиеся больные и их близкие сегодня уверены в эффективности нового препарата. Николай Николаевич Яхно, как и любой серьезный ученый, предпочитает быть максимально осторожным в формулировках и не добавлять в свои оценки никаких эмоций.
- Кроме леводофы, мы используем и другие лекарства, в том числе "мирапекс". Задача - или отсрочить применение леводофы и связанных с этим препаратом осложнений или уменьшить его дозу. К сожалению, у большинства пациентов Болезнь Паркинсона еще и провоцирует глубокую депрессию. Так вот, "заменители" леводофы, о которых мы говорим (их называют медицинским термином "агонисты дофамина"), помогают частично снять и депрессию. Сегодня мы имеем основание сказать, что из всех агонистов дофамина, которые у нас есть, "мирапекс" действительно наиболее эффективен и дает меньше всего побочных эффектов.
- Отзывы больных и их родственников о препарате полны восторженных оценок. Но если это лекарство не будет выдаваться им со скидкой или бесплатно, шансов приобрести его самостоятельно практически нет - цена слишком велика. Как вам кажется, насколько обоснованны просьбы пациентов о включении "мирапекса" в список льготных лекарств, которые бесплатно выдаются по жизненным показаниям?
- Логика тут достаточно простая. Если препарата нет, то трудно обеспечить человеку полноценную жизнь. Леводофа улучшает состояние больного, но может способствовать развитию осложнений. По сути, это новое лекарство, конечно, необходимо нашим пациентам по жизненным показаниям. Да, оно довольно дорогое. Но тут, я думаю, нужно фармако-экономическое исследование. Надо просчитать все потери от утраты трудоспособности больных, все затраты на уход за ними, на льготы по инвалидности. И тогда вполне может оказаться, что гораздо выгоднее обеспечить больного препаратом, не говоря уже о моральной стороне дела. Сейчас немало дорогих лекарств. Но многие из них могут сократить расходы общества.
К этому мнению остается добавить лишь немногое. Группа больных болезнью Паркинсона обращалась в Минздрав РФ с просьбой о помощи в обеспечении их лекарством, от которого в самом прямом смысле зависит будущее этих людей. Минздрав ответил, что по закону эти вопросы находятся в ведении местных органов власти. В данном случае решение вопроса зависит от московского Комитета здравоохранения. Оттуда больным пришло разъяснение, что интересующий их препарат не применялся в городских лечебных учреждениях, что в "льготный" список лекарств, отпускаемых пациентам бесплатно или со скидкой, он может быть включен только после проведения соответствующих испытаний на базе московских клиник. Возможно, мне неизвестны какие-то юридические тонкости всего процесса лекарственного обеспечения. Но кажется странным, что авторитет клиники нервных болезней, которой руководит Н.Яхно, и клинической больницы имени С.Боткина, где также испытывался препарат, недостаточен для решения вопроса об этом лекарстве. Оно, кстати, давно одобрено всеми соответствующими инстанциями и свободно продается в аптеках Москвы.
У Маргариты Васильевны есть свой взгляд на взаимоотношения общества и больного человека:
- Мой муж сорок шесть лет работал в гражданской авиации, был ведущим специалистом отрасли. Пенсия у него - 900 рублей. А стоимость препарата на месяц - примерно четыре с половиной тысячи рублей. Да, лечение дорогое, но ведь люди возвращаются к работе! Кстати, Болезнь Паркинсона часто поражает людей умственного труда. Как правило, это профессионалы с огромным опытом работы. Неужели их знания, их квалификация ничего не стоят? И неужели они не заслужили достойной пенсии? Мы готовы всю ее потратить на покупку лекарства, которое возвращает нас к радости жизни. Поймите, был абсолютно беспомощный инвалид, обреченный ползти по длинному беспросветному тоннелю жизни. Сейчас лекарство для него - как дверь из тоннеля, там звезда сияет, там полноценная жизнь, как раньше, до болезни. И что теперь - захлопнуть эту дверь?

Сегодня мы предлагаем Вам рассказ о хоть и чёрном, но незаменимом веществе (или субстанции) нашего мозга.

Чёрная субстанция (или Substantia nigra) занимает не так много места, как белое вещество. Она находится в среднем мозге - одной из древнейших структур в центре головного мозга. А именно, спрятана под четырьмя его холмиками. Если уж быть точными совсем, то у каждого из нас две Substantia nigra - слева и справа.

Средний мозг. Анимация от Life Science Databases(LSDB).

Поперечное сечение среднего мозга на уровне четверохолмия. Чёрная субстанция показана угадайте каким цветом.

Несмотря на то, что в Substantia nigra, как и в сером веществе, находятся тела нейронов, она значительно темнее за счет своей «окраски» нейромеланином (к слову, другая форма этого пигмента - меланин - придает цвет нашим глазам, коже и волосам).

Мономер нейромеланина

Всего в чёрной субстанции выделяют два слоя: компактный слой (pars compacta) и вентральный (pars reticulata). Тут нужно пояснить слово «вентральный».

Медики используют два пространственных антонима: вентральный и дорсальный. «Вентральный» означает «брюшной». Это совсем не значит, что вентральный слой черного вещества находится в желудке. Он просто в теле находится более «спереди». «Вентральный» - это передний, «дорсальный» - задний (спинной).

Если же говорить о функционале слоев, то компактный в каком-то смысле похож на процессор компьютера – он обрабатывает информацию и передает ее в таламус и четверохолмие среднего мозга, а вентральный - обеспечивает производство нейромедиатора дофамина. Слои располагаются вертикально, pars compacta расположен ближе к оси тела, чем pars reticulata.

Дофамин

Благодаря чёрному веществу мы можем двигать глазами, выполнять мелкие и точные движения, в частности, пальцев, жевать и глотать. А наш организм может осуществлять дыхание, сердечную деятельность, держать в тонусе кровеносные сосуды.

Нарушения работы чёрной субстанции приводят к разным заболеваниям. Есть гипотеза о том, что именно в нём кроется тайна шизофрении. А болезнь Паркинсона, о которой мы часто пишем на портале, вызвана именно нарушением производства дофамина в чёрной субстанции: она вызывает там гибель нейронов.

Экология жизни. Познавательно: Сегодня мы предлагаем Вам рассказ о хоть и чёрном, но незаменимом веществе (или субстанции) нашего мозга.

Сегодня мы предлагаем Вам рассказ о хоть и чёрном, но незаменимом веществе (или субстанции) нашего мозга.

Чёрная субстанция (или Substantia nigra) занимает не так много места, как белое вещество. Она находится в среднем мозге - одной из древнейших структур в центре головного мозга. А именно, спрятана под четырьмя его холмиками. Если уж быть точными совсем, то у каждого из нас две Substantia nigra - слева и справа.

Средний мозг. Анимация от Life Science Databases(LSDB).

Поперечное сечение среднего мозга на уровне четверохолмия. Чёрная субстанция показана угадайте каким цветом.

Несмотря на то, что в Substantia nigra, как и в сером веществе, находятся тела нейронов, она значительно темнее за счет своей «окраски» нейромеланином (к слову, другая форма этого пигмента - меланин - придает цвет нашим глазам, коже и волосам).

Мономер нейромеланина

Всего в чёрной субстанции выделяют два слоя: компактный слой (pars compacta) и вентральный (pars reticulata). Тут нужно пояснить слово «вентральный».

Медики используют два пространственных антонима: вентральный и дорсальный. «Вентральный» означает «брюшной». Это совсем не значит, что вентральный слой черного вещества находится в желудке. Он просто в теле находится более «спереди». «Вентральный» - это передний, «дорсальный» - задний (спинной).

Если же говорить о функционале слоев, то компактный в каком-то смысле похож на процессор компьютера – он обрабатывает информацию и передает ее в таламус и четверохолмие среднего мозга, а вентральный - обеспечивает производство нейромедиатора дофамина. Слои располагаются вертикально, pars compacta расположен ближе к оси тела, чем pars reticulata.

Дофамин

Благодаря чёрному веществу мы можем двигать глазами, выполнять мелкие и точные движения, в частности, пальцев, жевать и глотать. А наш организм может осуществлять дыхание, сердечную деятельность, держать в тонусе кровеносные сосуды.

Нарушения работы чёрной субстанции приводят к разным заболеваниям. Есть гипотеза о том, что именно в нём кроется тайна шизофрении. А болезнь Паркинсона, о которой мы часто пишем на портале, вызвана именно нарушением производства дофамина в чёрной субстанции: она вызывает там гибель нейронов.

Гистология черного тела пациента с болезнью Паркинсона

Исследователи даже нашли нейротоксин МФТП (1-метил-4-фенил-1,2,3,6-тетрагидропиридин), который точно так же, как и болезнь Паркинсона, разрушает дофаминовые нейроны, и теперь активно используют его на мышах для моделирования болезни и поиске способов её лечения. опубликовано

Средний мозг состоит из:

Бугров четверохолмия,

Красного ядра,

Черной субстанции,

Ядер шва.

Красное ядро – обеспечивает тонус скелетной мускулатуры, перераспределение тонуса при изменении позы. Просто потянуться – это мощная работа головного и спинного мозга, за которую отвечает красное ядро. Красное ядро обеспечивает нормальный тонус нашей мускулатуры. Если разрушить красное ядро возникает децеробрационная регидность, при этом резко повышается тонус у одних животных сгибателей, у других – разгибателей. А при абсолютном разрушении повышается сразу оба тонуса, и все зависит от того какие мышцы сильнее.

Черная субстанция – Каким образом возбуждение от одного нейрона передается к другому нейрону? Возникает возбуждение – это биоэлектрический процесс. Он дошел до конца аксона, где выделяется химическое вещество – медиатор. Каждая клетка имеет какой-то свой медиатор. В черной субстанции в нервных клетках вырабатывается медиатор дофамин . При разрушении черной субстанции возникает болезнь Паркинсона (постоянно дрожат пальцы рук, голова, или присутствует скованность в результате того, что к мышцам идет постоянный сигнал) потому, что в мозге не хватает дофамина. Черная субстанция обеспечивает тонкие инструментальные движения пальцев и оказывает влияние на все двигательные функции. Черная субстанция оказывает тормозное влияние на моторную кору через стриполидарную систему. При нарушении невозможно выполнять тонкие операции и возникает болезнь Паркинсона (скованность, тремор).

Сверху - передние бугры четверохолмия, а внизу - задние бугры четверохолмия. Смотрим мы глазами, а видим затылочной корой больших полушарий, где находится зрительное поле, где формируется образ. От глаза отходит нерв, проходит через ряд подкорковых образований, доходит до зрительной коры, зрительной коры нет, и мы ничего не увидим. Передние бугры четверохолмия – это первичная зрительная зона. С их участием возникает ориентировочная реакция на зрительный сигнал. Ориентировочная реакция – это «реакция что такое?» Если разрушить передние бугры четверохолмия зрение сохранится, но будет отсутствовать быстрая реакция на зрительный сигнал.

Задние бугры четверохолмия – это первичная слуховая зона. С ее участием возникает ориентировочная реакция на звуковой сигнал. Если разрушить задние бугры четверохолмия- слух сохранится но не будет ориентировочной реакции.

Ядра шва – это источник другого медиатора серотонина . Эта структура и этот медиатор принимает участие в процессе засыпания. Если разрушить ядра шва, то животное находится в постоянном состоянии бодрствовании и быстро погибает. Кроме того, серотонин принимает участие в обучении с положительным подкреплением (это когда крысе дают сыр) Серотонин обеспечивает такие черты характера, как незлопамятность, доброжелательность, у агрессивных людей недостаток серотонина в мозге.



12) Таламус – коллектор афферентных импульсов. Специфические и неспецифические ядра таламуса. Таламус – центр болевой чувствительности.

Таламус – зрительный бугор. Первым обнаружили в нем отношение к зрительным импульсам. Является коллектором афферентных импульсов, тех, что идут от рецепторов. В таламус поступают сигналы от всех рецепторов, кроме обонятельных. В таламус поступает инфа от коры бп от мозжечка и от базальных ганглиев. На уровне таламуса идет обработка этих сигналов, происходит отбор только наиболее важной для человека в данный момент информации, которая далее поступает в кору. Таламус состоит из нескольких десятков ядер. Ядра таламуса делятся на две группы: специфические и неспецифические. Через специфические ядра таламуса сигналы поступают строго к определенным зонам коры, например зрительная в затылочную, слуховая в височную долю. А через неспецифические ядра информация поступает диффузно ко всей коре, чтобы повысить ее возбудимость, для того чтобы более четко воспринимать специфическую информацию. Они готовят кору бп к восприятию специфической инф-ии. Высший центр болевой чувствительности - это таламус. Таламус является высшим центром болевой чувствительности. Боль формируется обязательно с участием таламуса, и при разрушении одних ядер таламуса полностью теряется болевая чувствительность, при разрушении других ядер возникают едва переносимые боли (например, формируются фантомные боли – боли в отсутствующей конечности).

13) Гипоталамо-гипофизарная система. Гипоталамус – центр регуляции эндокринной системы и мотиваций.

Гипоталамус с гипофизом образуют единую гипоталамогипофизарную систему.

Гипоталамус. От гипоталамуса отходит гипофизарная ножка, на которой висит гипофиз – главная эндокринная железа. Гипофиз регулирует работу других эндокринных желез. Гипотпламус связан с гипофизом нервными путями и кровеносными сосудами. Гипоталамус регулирует работу гипофиза, а через него и работу других эндокринных желез. Гипофиз делится на аденогипофиз (железистый) и нейрогипофиз . В гипоталамусе (это не эндокринная железа, это отдел мозга) есть нейросекреторные клетки, в которых секретируются гормоны. Это нервная клетка она может возбуждаться, может тормозиться, и в то же время в ней секретируются гормоны. От нее отходит аксон. А если это гормоны они выделяются в кровь, и затем поступает к органам решения, т. е. к тому органу, работу которого он регулирует. Два гормона:

- вазопрессин – способствует сохранению воды в организме, он действует на почки, при его недостатке возникает обезвоживание;

- окситоцин – вырабатывается здесь же, но в других клетках, обеспечивает сокращение матки при родах.

Гормоны секретируются в гипоталамусе, а выделяются гипофизом. Таким образом, гипоталамус связан с гипофизом нервными путями. С другой стороны: в нейрогипофизе ничего не вырабатывается, сюда гормоны приходят, но в аденогипофизе есть свои железистые клетки, где вырабатывается целый ряд важных гормонов:

- ганадотропный гормон – регулирует работу половых желез;

- тиреотропный гормон – регулирует работу щитовидной железы;

- адренокортикотропный – регулирует работу коркового слоя надпочечника;

- соматотропный гормон, или гормон роста, – обеспечивает рост костной ткани и развитие мышечной ткани;

- меланотропный гормон – отвечает за пигментацию у рыб и амфибий, у человека влияет на сетчатку.

Все гормоны синтезируются из предшественника который называется проопиомелланокортин . Синтезируется большая молекула, которая ферментами расщепляется, и из нее выделяются более мелкие по количеству аминокислот другие гормоны. Нейроэндокринология.

В гипоталамусе имеются нейросекреторные клетки. В них вырабатываются гормоны:

1) АДГ (антидиуретичкеский гормон регулирует кол-во выводимой мочи)

2) окситоцин (обеспечивает сокращение матки при родах).

3) статины

4) либерины

5) тиреотропный гормон влияет на выробатку гормонов щитовидной железы (тироксин, трийодтиронин)

Тиролиберин -> тиреотропный гормон -> тироксин -> трийодтиронин.

Кровеносный сосуд входит в гипоталамус, где разветвляется на капилляры, затем капилляры собираются и этот сосуд проходит через гипофизарную ножку, снова разветвляется в железистых клетках, выходит из гипофиза и выносит с собой все эти гормоны, которые с кровью идут каждый к своей железе. Зачем нужна эта «чудесная сосудистая сеть»? Есть нервные клетки гипоталамуса, которые заканчивается на кровеносных сосудах этой чудесной сосудистой сети. В этих клетках вырабатываются статины и либерины – это нейрогормоны . Статины тормозят выработку гормонов в гипофизе, а либерины ее усиливают. Если избыток гормона роста, возникает гигантизм, это можно остановить с помощью саматостатина. Наоборот: карлику вводят саматолиберин. И видимо к любому гормону есть такие нейрогормоны, но они не все еще открыты. Например, щитовидная железа, в ней вырабатывается тироксин, а для того чтобы регулировать его выработку в гипофизе вырабатывается тиреотропный гормон, а для того чтобы управлять тиреотропным гормоном, тиреостатина не обнаружено, а вот тиролиберин используется прекрасно. Хоть это и гормоны они вырабатываются в нервных клетках, поэтому у них кроме эндокринного воздействия есть широкий спектр внеэндокринных функций. Тиреолиберин называется панактивин , потому, что он повышает настроение, повышает работоспособность, нормализует давление, при травмах спинного мозга ускоряет заживление, единственно его нельзя применять при нарушениях в щитовидной железе.

Ранее рассмотрены функции, связанные с нейросекреторными клетками и клетками, которые вырабатывают нейрофебтиды.

В гипоталамусе вырабатываются статины и либерины, которые включаются в ответную стрэссорную реакцию организма. Если на организм воздействует какой-то вредящий фактор, то организм должен как-то отвечать – это и есть стрессорная реакция организма. Она не может протекать без участия статинов и либеринов, которые вырабатываются в гипоталамусе. Гипоталамус обязательно принимает участие во ответе на стрессорное воздействие.

Следующей функцией гипоталамуса является:

В нем находятся нервные клетки, чувствительные к стероидным гормонам, т. е. половым гормонам и к женским, и к мужским половым гормонам. Эта чувствительность и обеспечивает формирования по женскому или по мужскому типу. Гипоталамус создает условия для мотивации поведения по мужскому или по женскому типу.

Очень важная функция – это терморегуляция, в гипоталамусе находятся клетки, которые чувствительны к температуре крови. Температура тела может меняться в зависимости от окружающей среды. Кровь протекает по всем структурам мозга, но терморецептивные клетки, которые улавливают малейшие изменения температуры, находятся только в гипоталамусе. Гипоталамус включается и организует две ответные реакции организма или теплопродукцию, или теплоотдачу.

Пищевая мотивация. Почему у человека возникает чувство голода?

Сигнальная система – это уровень глюкозы в крови, он должен быть постоянным ~120 миллиграмм % - ов.

Есть механизм саморегуляции: если у нас снижается уровень глюкозы в крови, начинает расщипляться гликоген печени. С другой стороны запасов гликогена бывает недостаточно. В гипоталамусе есть глюкорецептивные клетки, т. е. клетки которые регистрируют уровень глюкозы в крови. Глюкорецептивные клетки образуют центры голода в гипоталамусе. При понижении уровня глюкозы в крови эти клетки, чувствительные к уровню глюкозы в крови, возбуждаются, и возникает ощущение голода. На уровне гипоталамуса возникает только пищевая мотивация – ощущение голода, для поиска пищи должна подключиться кора головного мозга, с ее участием возникает истинная пищевая реакция.

Центр насыщения, тоже находится в гипоталамусе, он тормозит чувство голода, что предохраняет нас от переедания. При разрушении центра насыщения возникает переедание и как следствие - булимия.

В гипоталамусе также находится центр жажды – осморецептивные клетки (осматическое давление зависит от концентрации солей в крови) Осморецептивные клетки регистрируют уровень солей в крови. При повышении солей в крови осморецептивные клетки возбуждаются, и возникает питьевая мотивация (реакция).

Гипоталамус является высшим центром регуляции вегетативной нервной системы.

Передние отделы гипоталамуса в основном регулируют парасимпатическую нервную систему, задние – симпатическую нервную систему.

Гипоталамус обеспечивает только мотивацию а целенаправленное поведение кора больших полушарий.

14) Нейрон – особенности строения и функций. Отличия нейронов от других клеток. Глия, гематоэнцефалический барьер, цереброспинальная жидкость.

I Во-первых, как мы уже отмечали – в их многообразии . Любая нервная клетка состоит из тела – сомы и отростков . Нейроны отличаются:

1. по размерам (от 20 нм до 100 нм) и форме сомы

2. по количеству и степени ветвления коротких отростков.

3. по строению, длине и разветвленности аксонных окончаний (латералей)

4. по числу шипиков

II Отличаются нейроны также по функциям :

а)воспринимающие информацию из внешней среды,

б) передающие информацию на периферию,

в) обрабатывающие и передающие информацию в пределах ЦНС,

г) возбуждающие,

д) тормозные .

III Отличаются по химическому составу : синтезируются разнообразные белки, липиды, ферменты и, главное, - медиаторы .

ПОЧЕМУ, С КАКИМИ ОСОБЕННОСТЯМИ ЭТО СВЯЗАНО?

Такое многообразие определяется высокой активностью генетического аппарата нейронов. Во время нейрональной индукции под влиянием фактора роста нейронов включаются НОВЫЕ ГЕНЫ в клетках эктодермы зародыша, которые характерны только для нейронов. Эти гены обеспечивают следующие особенности нейронов (важнейшие свойства) :

А) Способность воспринимать, обрабатывать, хранить и воспроизводить информацию

Б) ГЛУБОКУЮ СПЕЦИАЛИЗАЦИЮ:

0. Синтез специфических РНК ;

1. Отсутствие редупликации ДНК .

2. Доля генов, способных к транскрипции , составляют в нейронах 18-20%, а в некоторых клетках – до 40% (в других клетках - 2-6%)

3. Способность синтезировать специфические белки (до 100 в одной клетке)

4. Уникальность липидного состава

В) Привилегированность питания => Зависимость от уровня кислорода и глюкозы в крови.

Ни одна ткань в организме не находится в такой драматической зависимости от уровня кислорода в крови: 5-6 мин остановки дыхания и важнейшие структуры мозга погибают и в первую очередь - кора больших полушарий. Снижение уровня глюкозы ниже 0,11% или 80мг% - может наступить гипогликемия и далее - кома.

А с другой стороны, мозг отгорожен от кровотока ГЭБ. Он не пропускает к клеткам то, что могло бы им повредить. Но, к сожалению, далеко не все – многие низкомолекулярные токсичные вещества проходят через ГЭБ. И у фармакологов всегда есть задача: а проходит ли этот препарат через ГЭБ? В одних случаях это необходимо, если речь идет о заболеваниях мозга, в других – безразлично для больного, если препарат не повреждает нервные клетки, а в третьих этого надо избегать. (НАНОЧАСТИЦЫ, ОНКОЛОГИЯ).

Симпатическая НС возбуждается и стимулирует работу мозгового слоя надпочечников – выработка адреналина; в поджелудочной железе – глюкагон – расщепляет гликоген в почках до глюкозы; глюкокартикойды выраб. в корковом слое надпочечников – обеспечивает глюконеогенез – образование глюкозы из …)

И все-таки, при всем разнообразии нейронов их можно разделить на три группы: афферентные, эфферентные и вставочные (промежуточные).

15) Афферентные нейроны, их функции и строение. Рецепторы: строение, функции, формирование афферентного залпа.

Загрузка...
Top