Свободные, затухающие и вынужденные колебания линейного осциллятора. Механические колебания

Тема: Затухающие и вынужденные колебания


Коэффициент затухания.

Амплитуда

и частота затухающих колебаний.

    Логарифмический декремент затухания.

Добротность колебательной системы.

Апериодический процесс.

    Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания.

Раньше мы рассмотрели собственные колебания консервативных (идеальных) колебательных систем. В таких системах возникают гармонические колебания, которые характеризуются постоянством амплитуды и периода, и описываются следующим дифференциальным уравнением

. (1)

В реальных же колебательных системах всегда присутствуют силы, препятствующие колебаниям (силы сопротивления). Например, в механических системах всегда присутствует сила трения. В этом случае энергия колебаний постепенно расходуется на работу против силы трения. Поэтому энергия и амплитуда колебаний будет уменьшаться, и колебания будут затухать. В электрическом колебательном контуре энергия колебаний расходуется на нагревание проводников. То есть реальные колебательные системы являются диссипативными .

Собственные колебания в реальных системах являются затухающими.

Чтобы получить уравнение колебаний в реальной системе необходимо учесть силу сопротивления. Во многих случаях можно считать, что при небольших скоростях изменения величины S сила сопротивления пропорциональна скорости

где r – коэффициент сопротивления (коэффициент трения при механических колебаниях), а знак минус показывает, что сила сопротивления противоположна скорости.

Подставив силу сопротивления в формулу (2), получим дифференциальное уравнение, описывающее колебания в реальной системе

Перенесем все члены в левую часть, разделим на величину m и введем следующие обозначения

Как и прежде величина ω 0 определяет частоту собственных колебаний идеальной системы. Величина же β характеризует диссипацию энергии в системе и называется коэффициентом затухания. Из формулы (5) видно, что коэффициент затухания можно уменьшить, увеличив значение величины m при неизменном значении величины r .

С учетом введенных обозначений получим дифференциальное уравнение затухающих колебаний

    Решение дифференциального уравнения затухающих колебаний. Амплитуда и частота затухающих колебаний.

Можно показать, что при небольших значениях коэффициента затухания общее решение дифференциального уравнения затухающих колебаний имеет следующий вид

где величина, стоящая перед синусом называется амплитудой затухающих колебаний

Частота ω затухающих колебаний определяется следующим выражением

Из приведенной формулы (7) видно, что частота собственных колебаний реальной колебательной системы меньше частоты колебаний идеальной системы .

Г
рафик уравнения затухающих колебаний приведен на рисунке. Сплошной линией показан график смещения S(t), а штрихпунктирной линией показано изменение амплитуды затухающих колебаний.

Следует иметь в виду, что в результате затухания не все значения величин повторяются. Поэтому, строго говоря, понятия частоты и периода не применимы к затухающим колебаниям. В этом случае под периодом понимают промежуток времени, по прошествии которого колеблющиеся величины принимают максимальные (или минимальные) значения.

    Логарифмический декремент затухания. Добротность колебательной системы. Апериодический процесс.

Для количественной характеристики быстроты убывания амплитуды затухающих колебаний вводится логарифмический декремент затухания δ .

Логарифмическим декрементом затухания называется натуральный логарифм отношения амплитуд в моменты времени t и t + T , т.е. отличающихся на период .

По определению логарифмический декремент определяется следующей формулой

. (8)

Если вместо амплитуд в формуле (8) подставить формулу (6), то получим формулу, связывающую логарифмический декремент с коэффициентом затухания и периодом

. (9)

Промежуток времени τ , в течение которого амплитуда колебаний уменьшается в е раз, называется временем релаксации . С учетом этого получим, что , где N – это число колебаний, в течение которых амплитуда уменьшается в е раз. То есть логарифмический декремент затухания обратно пропорционален числу колебаний, в течение которых амплитуда уменьшается в е раз . Если, например, β =0,001, то это означает, что через 100 колебаний амплитуда уменьшится в е раз.

Добротностью колебательной системы называется безразмерная величина θ, равная произведению числа 2π и отношения энергии W (t ) колебаний в произвольный момент времени и убыли этой энергии за один период затухающих колебаний

. (10)

Так как энергия пропорциональна квадрату амплитуды колебаний, то заменив энергии в формуле (10) квадратами амплитуд, определяемых формулой (6), получим

При незначительных затуханиях , и . С учетом этого для добротности можно записать

. (12)

Приведенные здесь соотношения можно записать для различных колебательных систем. Для этого достаточно величины S , m , k и r заменить соответствующими величинами, характеризующими конкретные колебания. Например, для электромагнитных колебаний S→ q , m L , k →1/C и r R .

Апериодический процесс.

П
ри большом значении коэффициента затухания β происходит не только быстрое уменьшение амплитуды, но и увеличение периода колебаний. Из формулы (7) видно, что при циклическая частота колебаний обращается в нуль (Т = ∞), т.е. колебания не возникают. Это означает, что при большом сопротивлении вся энергия, сообщенная системе, к моменту возвращения ее в положение равновесия расходуется на работу против силы сопротивления. Система, выведенная из положения равновесия, возвращается в положение равновесия без запаса энергии. Говорят, что процесс протекает апериодически. При этом время установления равновесия определяется значением сопротивления.

Читателю предлагается самому посмотреть как влияют значения величин r , m , Т 1 и φ 0 на характер колебаний реальной колебательной системы.

Для этого необходимо навести курсор на диаграмму и двойным «клик» активизировать ее. Затем в открывшемся окне изменять значения величин, приведенных в цветных ячейках. По окончанию работы с графиком таблицу EXEL закрыть с сохранением или без сохранения данных.

Вопросы для самопроверки:

    Вывести уравнение затухающих колебаний. Какой вид имеет график уравнения затухающих колебаний?колебания 1.1 Механические колебания : гармонические, затухающие и вынужденные колебания Колебаниями называются процессы, отличающиеся той...

  1. Изучение вынужденных колебании в электрическом контуре

    Лабораторная работа >> Физика

    Установившиеся вынужденные колебания описываются функцией (5). Напряжение на конденсаторе равно (6) т.е. вынужденные колебания происходят... вследствие чего свободные колебания затухают. Уравнение, описывающее свободные (ε =О) затухающие колебания в контуре...

  2. Свободные и вынужденные колебания в контуре

    Лабораторная работа >> Коммуникации и связь

    И лабораторным стендом» 2) «Свободные колебания в одиночном контуре»3) «Вынужденные колебания в последовательном контуре» Выполнил студент... R1 в крайнее левое положение. Поосциллограмме затухающих колебаний измерили логарифмический декремент затухания. ; = ...

  3. Вынужденные электрические колебания

    Лабораторная работа >> Физика

    Решение однородного уравнения представляет собой затухающие собственные колебания , которые рано или поздно... времени устанавливаются вынужденные колебания с той же частотой, какова частота колебаний источника. Амплитуда вынужденных колебаний напря...

Свободные колебания с уменьшающейся амплитудой называют затухающими.

Энергия колебательного движения постепенно переходит в теплоту, излучение и т.д. Именно поэтому и уменьшается амплитуда: энергия колебаний пропорциональна квадрату амплитуды.

В механической колебательной системе потери энергии чаще всего связаны с трением. Если оно вязкое , то при малых скоростях движения v сила трения , где r - коэффициент трения, зависящий от формы и размеров тела и вязкости среды.

Запишем уравнение движения точки, которое происходит под действием двух сил: F = -kх (возвращающая сила или квазиупругая сила), и силы трения ,

формула" src="http://hi-edu.ru/e-books/xbook787/files/f513 - собственная частота незатухающих колебаний), опред-е">дифференциальное уравнение затухающих колебаний

формула" src="http://hi-edu.ru/e-books/xbook787/files/f516.gif" border="0" align="absmiddle" alt=") имеет вид:

формула" src="http://hi-edu.ru/e-books/xbook787/files/f518.gif" border="0" align="absmiddle" alt=" - частота затухающих колебаний , опред-е">начальными условиями , например, значениями смещения х и скорости dx/dt в момент времени t = 0.

опред-е">Амплитуда затухающих колебаний

пример">r , тем больше коэффициент затухания опред-е">Частота затухающих колебаний

формула" src="http://hi-edu.ru/e-books/xbook787/files/f524.gif" border="0" align="absmiddle" alt=".

Период затухающих колебаний

формула" src="http://hi-edu.ru/e-books/xbook787/files/f526.gif" border="0" align="absmiddle" alt=" период становится бесконечным Т = формула" src="http://hi-edu.ru/e-books/xbook787/files/f528.gif" border="0" align="absmiddle" alt=" период Т становится мнимым, а движение тела - апериодическим .

Если сопоставить значения амплитуд в два соседние моменты времени, разделенные одним периодом, т.е..gif" border="0" align="absmiddle" alt=", то их отношение равно

формула" src="http://hi-edu.ru/e-books/xbook787/files/f532.gif" border="0" align="absmiddle" alt="

носит название логарифмического декремента затухания формула" src="http://hi-edu.ru/e-books/xbook787/files/f533.gif" border="0" align="absmiddle" alt=" состоит в том, что с ее помощью можно определить полное число колебаний системы за время релаксации опред-е">т.е. за то время, за которое амплитуда уменьшается в е опред-е">2,7 раз

формула" src="http://hi-edu.ru/e-books/xbook787/files/f534.gif" border="0" align="absmiddle" alt=" следует, что пример">N за время релаксации формула" src="http://hi-edu.ru/e-books/xbook787/files/f538.gif" border="0" align="absmiddle" alt=".

Добротность Q осциллятора характеризует потери энергии колебательной системы за период:

опред-е">вынуждающей силой , а возникающие под ее действием незатухающие колебания - вынужденными .

В простейшем случае вынуждающая сила изменяется по закону синуса или косинуса, т.е

формула" src="http://hi-edu.ru/e-books/xbook787/files/f541.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt="

Если ввести обозначения, которые использовались при рассмотрении затухающих колебаний, формула" src="http://hi-edu.ru/e-books/xbook787/files/f545.gif" border="0" align="absmiddle" alt=", то дифференциальное уравнение вынужденных колебаний примет вид:

выделение">неоднородным . Как известно из курса высшей математики, решение этого уравнения состоит из

формула" src="http://hi-edu.ru/e-books/xbook787/files/f547.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt="

с неизвестными заранее амплитудой А и сдвигом фазы формула" src="http://hi-edu.ru/e-books/xbook787/files/f552.gif" border="0" align="absmiddle" alt="

В отсутствии затухания (формула" src="http://hi-edu.ru/e-books/xbook787/files/f554.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=", то амплитуда достигает максимального значения, равного опред-е">резонансной формула" src="http://hi-edu.ru/e-books/xbook787/files/f559.gif" border="0" align="absmiddle" alt="

Резкое возрастание амплитуды колебаний при некоторой частоте вынуждающей силы называют резонансом ..gif" border="0" align="absmiddle" alt="

При малых затуханиях (формула" src="http://hi-edu.ru/e-books/xbook787/files/f563.gif" border="0" align="absmiddle" alt=", т.е. если система настроена в такт со свободными колебаниями системы, то амплитуда колебаний резко возрастает. Если же это не так, то сила не способствует раскачиванию и амплитуда колебаний мала.

Значение резонансной амплитуды

формула" src="http://hi-edu.ru/e-books/xbook787/files/f562.gif" border="0" align="absmiddle" alt="

выделение">добротность системы получает еще один физический смысл : она показывает, во сколько раз сила, действующая с резонансной частотой, вызывает большее смещение, чем постоянная сила, т.е. во сколько раз резонансное смещение больше статического.

Контрольные вопросы и задачи

1. Запишите дифференциальное уравнение механических затухающих колебаний. Каким физическим законом Вы воспользовались?

2. По какому закону изменяется амплитуда затухающего колебания?

3. Что такое время релаксации?

4. Какой физический смысл имеет логарифмический декремент затухания?

5. Амплитуда затухающих колебаний математического маятника за 1 мин уменьшилась в 3 раза. Определите, во сколько раз она уменьшится за 4 мин.

6. Какие колебания называются вынужденными?

7. Каков физический смысл добротности колебательной системы?

8. Чем обусловлена частота вынужденных колебаний?

9. В чем отличие резонанса в системе с большой и малой добротностью?

10. Какой режим вынужденных колебаний называется установившимся?

11. Запишите общее решение дифференциального уравнения вынужденных колебаний. Из каких частей оно состоит?

12. В чем заключается явление резонанса? Приведите примеры использования этого явления в природе и технике?

Физика ответы (Семенов) .docx

10.Колебательное движение. Свободные, вынужденные и затухающие колебания.

1) Колебания называются свободными (или собственными ), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воз­действий на колебательную систему (систему, совершающую колебания).Дифференциальное уравнение2) Свободныезатухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омичес­ких потерь и излучения электромагнитной энергии в электрических колебательных системах.Дифференциальное уравнение 3) Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственновынужденными механическими ивынужденными электромагнитными колебаниями Дифференциальное уравнение

11. Сложение гармонических колебаний одного направления и одинаковой частоты. Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить.

Сложим гармонические колебания одного направления и одинаковой частоты

Уравнение результирующего колебания будет

В выражении амплитудаА и начальная фазасоответственно задаются соотношениямТаким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направле­нии и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз ( 2 - 1) складываемых колебаний.

12. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу

Результат сложения двух гармонических колебаний одинаковой час­тоты , происходящих во взаимно перпендикулярных направлениях вдоль осейх и у. Для простоты начало отсчета выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишемгде- разность фаз обоих колебаний,А иВ - амплитуды складываемых колебаний. Уравнение траектории результирующего колебания находится исключением из выражений параметраt . Записывая складываемые колебания в виде

и заменяя во втором уравненииcost нах/А иsint на, получим после несложных преобразованийуравнение эллипса, оси которого ориентированы относите­льно координатных осейпроизвольно: Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называютсяэллиптически поляризованными.

12. Фигуры Лиссажу

Замкнутые тра­ектории, прочерчиваемые точкой, совершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу .* Вид этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний.

13. Законы идеальных газов. Уравнение Клапейрона-Менделеева.

Закон Бойля-Мариотта *: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная:pV=constприT=const,m=const

Законы Гей-Люссака *:1) объем данной массы газа при постоянном давлении изменяется линейно с температурой:V=Vo(1+t) ПриV=const

2) давление данной массы газа при постоянном объеме изменяется линейно с тем­пературой:p=po(1+t) приV=const,m=const

Закон Дальтона *: давление смеси идеальных газов равно сумме парциальных давленийp 1 , p 2 ,..., р n входящих в нее газов:

Cостояние некоторой массы газа определяется тремя термодина­мическими параметрами: давлениемр, объемомV и температуройТ. Между этими параметрами существует определенная связь, называемая уравнением состояния, кото­рое в общем виде дается выражением

Выражение является уравнением Клапейрона, в котором В - газовая постоянная,различная для разных газов.

Уравнениюудовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона - Менделеева.

Уравнение Клапейрона - Менделеева для массы т газа

где = m / M - количество вещества, гдеN A / V m = n - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

Затуханием колебаний называют уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой (например, превращение энергии колебаний в теплоту вследствие трения в механических системах). Затухание нарушает периодичность колебаний, потому они уже не являются периодическим процессом. Если затухание мало, то можно условно пользоваться понятием периода колебаний – Т (на рисунке 7.6 А 0 – начальная амплитуда колебаний).

Рисунок 7.6 – Характеристики затухающих колебаний

Затухающие механические колебания пружинного маятника происходят под действием двух сил: силы упругости и силы сопротивления:

где r – коэффициент сопротивления.

Воспользовавшись уравнением второго закона Ньютона, можно получить:

или

Разделим последнее уравнение на m и введем обозначение или

где β коэффициент затухания, тогда уравнение примет вид

(7.20)

Данное выражение и есть дифференциальное уравнение затухающих колебаний. Решением этого уравнения является

Отсюда следует экспоненциальный характер затухающих колебаний, т.е. амплитуда колебаний убывает по экспоненциальному закону (рисунок 7.6):

(7.22)

Относительное уменьшение амплитуды колебаний за период характеризуется декрементом затухания, равным

(7.23)

или логарифмическим декрементом затухания:

(7.24)

Коэффициент затухания β обратно пропорционален времени τ в течение которого амплитуда колебаний уменьшается в e раз:

т.е. (7.25)

Частота затухающих колебаний всегда меньше частоты собственных колебаний и может быть найдена из выражения

(7.26)

где ω 0 частота собственных колебаний системы.

Соответственно период затухающих колебаний равен:

Или (7.27)

С увеличением трения период колебаний возрастает, а при период .

Для получения незатухающих колебаний необходимо воздействие дополнительной переменной внешней силы, которая подталкивала бы материальную точку то в одну, то в другую сторону и работа которой непрерывно бы восполняла убыль энергии, затрачиваемой на преодоление трения. Такая переменная сила называется вынуждающей F вын, а возникающие под ее действием незатухающие колебания – вынужденными .

Если вынуждающая сила изменяется в соответствием с выражением, то уравнение вынужденных колебаний примет вид

(7.28)

(7.29)

где ωциклическая частота вынуждающей силы.

Это дифференциальное уравнение вынужденных колебаний . Реше­ние его может быть записано в виде

Уравнение описывает гармоническое колебание, происходящее с частотой, равной частоте вынуждающей силы, отличающееся по фазе на φотносительно колебаний силы.

Амплитуда вынужденного колебания:

(7.30)

Разность фаз между колебаниями силы и системы находится из вы­ражения

(7.31)

График вынужденных колебаний приведен на рисунке 7.7.

Рисунок 7.7 – Вынужденные колебания

При вынужденных колебаниях может наблюдаться такое явление, как резонанс. Резонанс это резкое возрастание амплитуды колебаний системы.

Определим условие, при котором наступает резонанс, для этого рас­смотрим уравнение (7.30). Найдем условие, при котором амплитуда при­нимает максимальное значение.

Из математики известно, что экстремум функции будет, когда про­изводная равна нулю, т.е.

Дискриминант равен

Следовательно

После преобразования получаем

Следовательно резонансная частота.

В простейшем случае резонанс наступает, когда внешняя периоди­ческая сила F меняется с частотой ω , равной частоте собственных колеба­ний системы ω = ω 0 .

Механические волны

Процесс распространения колебаний в сплошной среде, периодический во времени и пространстве, называется волновым процессом или волной .

При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством волн, независимо от их природы, является перенос энергии без переноса вещества .

Выделяют следующие типы волн:

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. В любой упругой волне одновременно существуют два вида движения: колебание частиц среды и распространение возмущения.

Волна, в которой колебания частиц среды и распространение волны происходят в одном направлении, называется продольной , а волна, в которой частицы среды колеблются перпендикулярно направлению распространения волны, называется поперечной .

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформациях сжатия и растяжения, т.е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т.е. в твердых телах. Таким образом, в жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.

Упругая волна называется синусоидальной (или гармонической), если соответствующие ей колебания частиц среды являются гармоническими.

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ .

Длина волны равна расстоянию, на которое распространяется волна за время, равное периоду колебаний:

где – скорость распространения волны.

Так как (где ν частота колебания), то

Геометрическое место точек, до которых доходят колебания к моменту времени t , называется волновым фронтом . Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью .

Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому энергия колебания в процессе колебания уменьшается, переходя в теплоту. Так как энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (рис. 53; х - смещение, t - время). Когда вся энергия колебания перейдет в теплоту, колебание прекратится (затухнет). Такого рода колебания называются затухающими.

Для того чтобы система совершала незатухающие колебания, необходимо восполнять извне потери энергии колебания на трение. Для этого надо воздействовать на систему периодически изменяющейся силой

где амплитудное (максимальное) значение силы, круговая частота колебаний силы, время. Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынуждающей силой, а колебания системы - вынужденными. Очевидно, что вынужденные колебания происходят с частотой, равной частоте вынуждающей силы. Определим амплитуду вынужденных колебаний.

Для упрощения расчета пренебрежем силой трения, полагая, что на колеблющееся тело действуют только две силы: вынуждающая и возвращающая Тогда, согласно второму закону Ньютона,

где - масса и ускорение колеблющегося тела. Но, как было показано в § 27, Тогда

где смещение колеблющегося тела. Согласно формуле (9),

где - круговая частота собственных колебаний тела (т. е. колебаний, обусловленных только действием возвращающей силы). Поэтому

Из уравнения (22) следует, что амплитуда вынужденного колебания

зависит от соотношения круговых частот вынужденного и собственного колебаний: при будет В действительности благодаря трению амплитуда вынужденных колебаний

остается конечной. Она достигает максимального значения в том случае, когда частота вынужденных колебаний близка к частоте собственных колебаний системы. Явление резкого возрастания амплитуды вынужденных колебаний при называется резонансом.

Используя резонанс, можно посредством небольшой вынуждающей силы вызвать колебание с большой амплитудой. Подвесим, например, карманные или ручные часы на нити такой длины, чтобы частота собственных колебаний полученного физического маятника (рис. 54) совпала с частотой колебаний балансира часового механизма. В результате часы сами начнут колебаться, отклоняясь от положения равновесия на угол а 30°.

Явление резонанса имеет место при колебаниях любой природы (механических, звуковых, электрических и др.). Оно широко используется в акустике - для усиления звука, в радиотехнике - для усиления электрических колебаний и т. п.

В некоторых случаях резонанс играет вредную роль. Он может вызвать сильную вибрацию конструкций (зданий, опор, мостов и т. п.) при работе установленных на этих конструкциях механизмов (станков, моторов и т. п.). Поэтому при расчете сооружений необходимо обеспечивать значительное различие между частотами колебаний механизмов и собственных колебаний конструкций.

В технике распространен еще один вид незатухающих колебаний - так называемые автоколебания, отличающиеся от вынужденных тем, что у них потери энергии колебания восполняются за счет постоянного источника энергии, вводимого в действие на очень короткие промежутки времени (в сравнении с периодом колебаний). Причем этот источник «включается» в нужные моменты времени автоматически самой колебательной системой. Примером автоколебательной системы может служить часовой маятник. Здесь потенциальная энергия приподнятого груза (или деформированной пружины) вводится в действие посредством анкерного механизма. Другим примером может служить замкнутый колебательный контур с электронной лампой; с действием этой автоколебательной системы мы познакомимся позже (см. § 112).

Загрузка...
Top