Прямолинейное равноускоренное движение уравнение графики. Перемещение при равноускоренном движении

Механика


Формулы кинематики:

Кинематика

Механическое движение

Механическим движением называется изменение положения тела (в пространстве) относительно других тел (с течением времени).

Относительность движения. Система отсчета

Чтобы описать механическое движение тела (точки), нужно знать его координаты в любой момент времени. Для определения координат следует выбрать ­тело отсчета и связать с ним систему координат . Часто телом отсчета служит Земля, с которой связывается прямоугольная декартова система координат. Для определения положения точки в любой момент времени необходимо также задать начало отсчета времени.

Система координат, тело отсчета, с которым она связана, и прибор для измерения времени образуют систему отсчета , относительно которой рассматривается движение тела.

Материальная точка

Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой .

Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстояниями от него до других тел.

Траектория, путь, перемещение

Траекторией движения называется линия, вдоль которой движется тело. Длина траектории называется пройденным путем . Путь – скалярная физическая величина, может быть только положительным.

Перемещением называется вектор, соединяющий начальную и конечную точки траектории.

Движение тела, при котором все его точки в данный момент времени движутся одинаково, называется поступательным движением . Для описания поступательного движения тела достаточно выбрать одну точку и описать ее движение.

Движение, при котором траектории всех точек тела являются окружностями с центрами на одной прямой и все плоскости окружностей перпендикулярны этой прямой, называется вращательным движением.

Метр и секунда

Чтобы определить координаты тела, необходимо уметь измерять расстояние на прямой между двумя точками. Любой процесс измерения физической величины заключается в сравнении измеряемой величины с единицей измерения этой величины.

Единицей измерения длины в Международной системе единиц (СИ) является метр . Метр равен примерно 1/40 000 000 части земного меридиана. По современному представлению метр – это расстояние, которое свет проходит в пустоте за 1/299 792 458 долю секунды.

Для измерения времени выбирается какой-нибудь периодически повторяющийся процесс. Единицей измерения времени в СИ принята секунда . Секунда равна 9 192 631 770 периодам излучения атома цезия при переходе между двумя уровнями сверхтонкой структуры основного состояния.

В СИ длина и время приняты за независимые от других величины. Подобные величины называются основными .

Мгновенная скорость

Для количественной характеристики процесса движения тела вводится понятие скорости движения.

Мгновенной скоростью поступательного движения тела в момент времени t называется отношение очень малого перемещения Ds к малому промежутку времени Dt, за который произошло это перемещение:

Мгновенная скорость – векторная величина. Мгновенная скорость перемещения всегда направлена по касательной к траектории в сторону движения тела.

Единицей скорости является 1 м/с. Метр в секунду равен скорости прямолинейно и равномерно движущейся точки, при которой точка за время 1 с перемещается на расстояние 1 м.

Ускорение

Ускорением называется векторная физическая величина, равная отношению очень малого изменения вектора скорости к малому промежутку времени, за которое произошло это изменение, т.е. это мера быстроты изменения скорости:

Метр в секунду за секунду – это такое ускорение, при котором скорость тела, движущегося прямолинейно и равноускоренно, за время 1 с изменяется на 1 м/с.

Направление вектора ускорения совпадает с направлением вектора изменения скорости () при очень малых значениях промежутка времени, за который происходит изменение скорости.

Если тело движется по прямой и его скорость возрастает, то направл­ение вектора ускорения совпадает с направлением вектора скорости; при убывании скорости – противоположно направлению вектора скорости.

При движении по криволинейной траектории направление вектора скорости изменяется в процессе движения, вектор ускорения при этом может оказаться направлен под любым углом к вектору скорости.

Равномерное, равноускоренное прямолинейное движение

Движение с постоянной скоростью называется равномерным прямолинейным движением . При равномерном прямолинейном движении тело движется по прямой и за любые равные промежутки времени проходит одинаковые пути.

Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным движением . При таком движении скорость тела изменяется с течением времени.

Равнопеременным называется такое движение, при котором скорость тела за любые равные промежутки времени изменяется на одинаковую величину, т.е. движение с постоянным ускорением.

Равноускоренным называется равнопеременное движение, при котором величина скорости возрастает. Равнозамедленным – равнопеременное движение, при котором величина скорости уменьшается.

График зависимости V(t) для этого случая показан на рис.1.2.1. Промежуток времени Δt в формуле (1.4) можно брать любой. Отношение ΔV/Δt от этого не зависит. Тогда ΔV=аΔt . Применяя эту формулу к промежутку от t о = 0 до некоторого момента t , можно написать выражение для скорости:

V(t)=V 0 + at. (1.5)

Здесь V 0 – значение скорости при t о = 0. Если направления скорости и ускорения противоположны, то говорят о равнозамедленном движении (рис. 1.2.2).

При равнозамедленном движении аналогично получаем

V(t) = V 0 – at.

Разберём вывод формулы перемещения тела при равноускоренном движении. Заметим, что в этом случае перемещение и пройденный путь – одно и тоже число.

Рассмотрим малый промежуток времени Δt . Из определения средней скорости V cp = ΔS/Δt можно найти пройденный путь ΔS = V cp Δt. На рисунке видно, что путь ΔS численно равен площади прямоугольника с шириной Δt и высотой V cp . Если промежуток времени Δt выбрать достаточно малым, средняя скорость на интервале Δt совпадет с мгновенной скоростью в средней точке. ΔS ≈ VΔt . Это соотношение тем точнее, чем меньше Δt . Разбивая полное время движения на такие малые интервалы и учитывая, что полный путь S складывается из путей, пройденных за эти интервалы, можно убедиться, что на графике скорости он численно равен площади трапеции:

S= ½·(V 0 + V)t ,

подставляя (1.5), получим для равноускоренного движения:

S = V 0 t + (at 2 /2) (1.6)

Для равнозамедленного движения перемещение L вычисляется так:

L= V 0 t–(at 2 /2).

Разберем задачу 1.3.

Пусть график скорости имеет вид, изображенный на рис. 1.2.4. Нарисуйте качественно синхронные графики пути и ускорения от времени.

Студент: – Мне не приходилось встречаться с понятием «синхронные графики», я также не очень представляю, что значит «нарисовать качественно».

– Синхронные графики имеют одинаковые масштабы по оси абсцисс, на которой отложено время. Расположены графики один под другим. Удобны синхронные графики для сопоставления сразу нескольких параметров в один момент времени. В этой задаче мы будем изображать движение качественно, т. е. без учета конкретных числовых значений. Для нас вполне достаточно установить: убывает функция или возрастает, какой вид она имеет, есть ли у нее разрывы или изломы и т. д. Думаю, для начала нам следует рассуждать вместе.


Разделим все время движения на три промежутка ОВ , BD , DE . Скажите, какой характер носит движение на каждом из них и по какой формуле будем вычислять пройденный путь?

Студент: – На участке ОВ тело двигалось равноускоренно с нулевой начальной скоростью, поэтому формула для пути имеет вид:

S 1 (t) = at 2 /2.

Ускорение можно найти, разделив изменение скорости, т.е. длину АВ , на промежуток времени ОВ .

Студент: – На участке ВD тело движется равномерно со скоростью V 0 , приобретенной к концу участка ОВ . Формула пути – S = Vt . Ускорения нет.

S 2 (t) = at 1 2 /2 + V 0 (t– t 1).

Учитывая это пояснение, напишите формулу для пути на участке DE .

Студент: – На последнем участке движение равнозамедленное. Буду рассуждать так. До момента времени t 2 тело уже прошло расстояние S 2 = at 1 2 /2 + V(t 2 – t 1).

К нему надо добавить выражение для равнозамедленного случая, учитывая, что время отсчитывается от значения t 2 получаем пройденный путь, за время t – t 2:

S 3 =V 0 (t–t 2)–/2.

Предвижу вопрос о том, как найти ускорение a 1 . Оно равно СD/DE . В итоге получаем путь, пройденный за время t>t 2

S (t)= at 1 2 /2+V 0 (t–t 1)– /2.

Студент: – На первом участке имеем параболу с ветвями, направленными вверх. На втором – прямую, на последнем – тоже параболу, но с ветвями вниз.

– Ваш рисунок имеет неточности. График пути не имеет изломов, т. е. параболы следует плавно сопрягать с прямой. Мы уже говорили, что скорость определяется тангенсом угла наклона касательной. По Вашему чертежу получается, что в момент t 1 скорость имеет сразу два значения. Если строить касательную слева, то скорость будет численно равна tg α, а если подходить к точке справа, то скорость равна tg β. Но в нашем случае скорость – непрерывная функция. Противоречие снимается, если график построить так.

Есть еще одно полезное соотношение между S , a, V и V 0 . Будем предполагать, что движение происходит в одну сторону. В этом случае перемещение тела от начальной точки совпадает с пройденным путём. Используя (1.5), выразите время t и исключите его из равенства (1.6). Так Вы получите эту формулу.

Студент: V(t) = V 0 + at , значит,

t = (V– V 0)/a,

S = V 0 t + at 2 /2 = V 0 (V– V 0)/a + a[(V– V 0)/a] 2 = .

Окончательно имеем:

S = . (1.6а)

История .

Однажды во время обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму, и его выступление оказалось слабым. Бор, однако, не пал духом и в заключение с улыбкой сказал:

– Я выслушал здесь столько плохих выступлений, что прошу рассматривать моё как месть.

В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно ускорению свободного падения . Для кинематического описания движения камня систему координат удобно выбрать так, чтобы одна из осей, например ось OY , была направлена параллельно вектору ускорения. Тогда криволинейное движение камня можно представить как сумму двух движений – прямолинейного равноускоренного движения вдоль оси OY и равномерного прямолинейного движения в перпендикулярном направлении, т. е. вдоль оси OX (рис. 1.4.1).

Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.

Рисунок 1.4.1.

Проекции векторов скорости и ускорения на координатные оси. a x = 0, a y = –g

При равноускоренном прямолинейном движении скорость тела определяется формулой

(*)

В этой формуле υ 0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис. 1.4.2).

Рисунок 1.4.2.

Графики скорости равноускоренного движения

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. 1.4.2 для графика I. Ускорение численно равно отношению сторон треугольника ABC :

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ 0 = –2 м/с, a = 1/2 м/с 2 .

Для графика II: υ 0 = 3 м/с, a = –1/3 м/с 2

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис. 1.4.2). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ 0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:

(**)

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y 0 прибавить перемещение за время t :

(***)

Это выражение называют законом равноускоренного движения .

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ 0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ 0 , ускорение a и перемещение s :

Если начальная скорость υ 0 равна нулю, эти формулы принимают вид

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ 0 , υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении»

При равноускоренном движении график имеет вид прямой линии, уходящей вверх, так как его проекция ускорения больше нуля.

При равномерном прямолинейном движении площадь численно будет равна модулю проекции перемещения тела. Оказывается, этот факт можно обобщить для случая не только равномерного движения, но и для любого движения, то есть показать, что площадь под графиком численно равна модулю проекции перемещения. Это делается строго математически, но мы воспользуемся графическим способом.

Рис. 2. График зависимости скорости от времени при равноускоренном движении ()

Разобьем график проекции скорости от времени для равноускоренного движения на небольшие промежутки времени Δt. Предположим, что они так малы, что на их протяжении скорость практически не менялась, то есть график линейной зависимости на рисунке мы условно превратим в лесенку. На каждой ее ступеньке мы считаем, что скорость практически не поменялась. Представим, что промежутки времени Δt мы сделаем бесконечно малыми. В математике говорят: совершаем предельный переход. В этом случае площадь такой лесенки будет неограниченно близко совпадать с площадью трапеции, которую ограничивает график V x (t). А это значит, что и для случая равноускоренного движения можно сказать, что модуль проекции перемещения численно равен площади, ограниченной графиком V x (t): осями абсцисс и ординат и перпендикуляром, опущенным на ось абсцисс, то есть площади трапеции ОАВС, которую мы видим на рисунке 2.

Задача из физической превращается в математическую задачу - поиск площади трапеции. Это стандартная ситуация, когда ученые физики составляют модель, которая описывает то или иное явление, а затем в дело вступает математика, которая обогащает эту модель уравнениями, законами - тем, что превращает модель в теорию.

Находим площадь трапеции: трапеция является прямоугольной, так как угол между осями - 90 0 , разобьем трапецию на две фигуры - прямоугольник и треугольник. Очевидно, что общая площадь будет равна сумме площадей этих фигур (рис. 3). Найдем их площади: площадь прямоугольника равна произведению сторон, то есть V 0x · t, площадь прямоугольного треугольника будет равна половине произведения катетов - 1/2АD·BD, подставив значения проекций, получим: 1/2t·(V x - V 0x), а, вспомнив закон изменения скорости от времени при равноускоренном движении: V x (t) = V 0x + а х t, совершенно очевидно, что разность проекций скоростей равна произведению проекции ускорения а х на время t, то есть V x - V 0x = а х t.

Рис. 3. Определение площади трапеции (Источник)

Учитывая тот факт, что площадь трапеции численно равна модулю проекции перемещения, получим:

S х(t) = V 0 x t + а х t 2 /2

Мы с вами получили закон зависимости проекции перемещения от времени при равноускоренном движении в скалярной форме, в векторной форме он будет выглядеть так:

(t) = t + t 2 / 2

Выведем еще одну формулу для проекции перемещения, в которую не будет входить в качестве переменной время. Решим систему уравнений, исключив из нее время:

S x (t) = V 0 x + а х t 2 /2

V x (t) = V 0 x + а х t

Представим, что время нам неизвестно, тогда выразим время из второго уравнения:

t = V x - V 0x / а х

Подставим полученное значение в первое уравнение:

Получим такое громоздкое выражение, возведем в квадрат и приведем подобные:

Мы получили очень удобное выражение проекции перемещения для случая, когда нам неизвестно время движения.

Пусть у нас начальная скорость автомобиля, когда началось торможение, составляет V 0 = 72 км/ч, конечная скорость V = 0, ускорение а = 4 м/с 2 . Узнаем длину тормозного пути. Переведя километры в метры и подставив значения в формулу, получим, что тормозной путь составит:

S x = 0 - 400(м/с) 2 / -2 · 4 м/с 2 = 50 м

Проанализируем следующую формулу:

S x = (V 0 x + V x) / 2 · t

Проекция перемещения- это полусумма проекций начальной и конечной скоростей, умноженная на время движения. Вспомним формулу перемещения для средней скорости

S x = V ср · t

В случае равноускоренного движения средняя скорость будет:

V ср = (V 0 + V к) / 2

Мы вплотную подошли к решению главной задачи механики равноускоренного движения, то есть получению закона, по которому меняется координата со временем:

х(t) = х 0 + V 0 x t + а х t 2 /2

Для того чтобы научиться пользоваться этим законом, разберем типичную задачу.

Автомобиль, двигаясь из состояния покоя, приобретает ускорение 2 м/с 2 . Найти путь, который прошел автомобиль за 3 секунды и за третью секунду.

Дано: V 0 x = 0

Запишем закон, по которому меняется перемещение со временем при

равноускоренном движении: S х = V 0 x t + а х t 2 /2. 2 c < Δt 2 < 3.

Мы можем ответить на первый вопрос задачи, подставив данные:

t 1 = 3 c S 1х = а х t 2 /2 = 2· 3 2 / 2 = 9 (м) - это путь, который прошел

c автомобиль за 3 секунды.

Узнаем сколько он проехал за 2 секунды:

S х (2 с) = а х t 2 /2 = 2· 2 2 / 2 = 4 (м)

Итак, мы с вами знаем, что за две секунды автомобиль проехал 4 метра.

Теперь, зная два эти расстояния, мы можем найти путь, который он прошел за третью секунду:

S 2х = S 1х + S х (2 с) = 9 - 4 = 5 (м)

1) Аналитический способ.

Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

(начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

При этом скорость мотоциклиста изменялась по закону:

В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

Решая это уравнение относительно , находим время встречи:

Это квадратное уравнение. Определяем дискриминант:

Определяем корни:

Подставим в формулы числовые значения и вычислим:

Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

Таким образом, время, когда мотоциклист догнал велосипедиста:

Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

2) Графический способ.

На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.

Загрузка...
Top