При решении систем уравнений методом гаусса нельзя. Решение систем линейных уравнений методом гаусса

Карл Фридрих Гаусс – немецкий математик, основатель одноименного метода решения СЛАУ

Карл Фридрих Гаусс – был известным великим математиком и его в своё время признали «королём математики». Хотя название «метод Гаусса» является общепринятым, Гаусс не является его автором: метод Гаусса был известен задолго до него. Первое его описание имеется в китайском трактате «Математика в девяти книгах», который составлен между II в. до н. э. и I в. н. э. и представляет собой компиляцию более ранних трудов, написанных примерно в X в. до н. э.

– последовательное исключение неизвестных. Этот метод используется для решения квадратных систем линейных алгебраических уравнений. Хотя уравнения при помощи метода Гаусса решаются легко, но всё же студенты часто не могут найти правильное решение, так как путаются в знаках (плюсы и минусы). Поэтому во время решения СЛАУ необходимо быть предельно внимательным и только тогда можно легко, быстро и правильно решить даже самое сложное уравнение.

У систем линейных алгебраических уравнений есть несколько преимуществ: уравнение не обязательно заранее на совместность; можно решать такие системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равняется нулю; есть возможность при помощи метода Гаусса приводить к результату при сравнительно небольшом количестве вычислительных операций.

Как уже говорилось, метод Гаусса вызывает у студентов некоторые сложности. Однако, если выучить методику и алгоритм решения, сразу же приходит понимание в тонкостях решения.

Для начала систематизируем знания о системах линейных уравнений.

Обратите внимание!

СЛАУ в зависимости от её элементов может иметь:

  1. Одно решение;
  2. много решений;
  3. совсем не иметь решений.

В первых двух случаях СЛАУ называется совместимой, а в третьем случае – несовместима. Если система имеет одно решение, она называется определённой, а если решений больше одного, тогда система называется неопределённой.

Метод Гаусса – теорема, примеры решений обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Карл Фридрих Гаусс, величайший математик долгое время колебался, выбирая между философией и математикой. Возможно, именно такой склад ума позволил ему столь заметно "наследить" в мировой науке. В частности, создав "Метод Гаусса" ...

Почти 4 года статьи этого сайта касались школьного образования, в основном, со стороны философии, принципов (не)понимания, внедряемых в сознание детей. Приходит время бОльшей конкретики, примеров и методов... Я верю, что именно такой подход к привычным, запутанным и важным областям жизни дает лучшие результаты.

Мы, люди так устроены, что сколько ни говори об абстрактном мышлении , но понимание всегда происходит через примеры . Если примеры отсутствуют, то принципы уловить невозможно... Как невозможно оказаться на вершине горы иначе, как пройдя весь ее склон от подножия.

Тоже и со школой: пока живых историй недостаточно мы инстинктивно продолжаем считать ее местом, где детей учат понимать.

Например, обучая методу Гаусса...

Метод Гаусса в 5 классе школы

Оговорюсь сразу: метод Гаусса имеет гораздо более широкое применение, например, при решении систем линейных уравнений . То, о чем мы будем говорить, проходят в 5 классе. Это начала , уяснив которые, гораздо легче разобраться в более "продвинутых вариантах". В этой статье мы говорим о методе (способе) Гаусса при нахождении суммы ряда

Вот пример, который принес из школы мой младший сын, посещающий 5 класс московской гимназии.

Школьная демонстрация метода Гаусса

Учитель математики с использованием интерактивной доски (современные методы обучения ) показал детям презентацию истории "создания метода" маленьким Гауссом.

Школьный учитель выпорол маленького Карла (устаревший метод, нынче в школах не применяется) за то, что тот,

вместо того, чтобы последовательно складывая числа от 1 до 100 найти их сумму заметил , что пары чисел, равно отстоящие от краев арифметической прогрессии, в сумме дают одно и то же число. например, 100 и 1, 99 и 2. Посчитав количество таких пар, маленький Гаусс почти моментально решил предложенную учителем задачу. За что и был подвергнут экзекуции на глазах изумленной публики. Чтобы остальным думать было неповадно.

Что сделал маленький Гаусс, развивший чувство числа ? Заметил некоторую особенность числового ряда с постоянным шагом (арифметической прогрессии). И именно это сделало его впоследствии великим ученым, умеющим замечать , обладающим чувством, инстинктом понимания .

Этим и ценна математика, развивающая способность видеть общее в частном - абстрактное мышление . Поэтому большинство родителей и работодателей инстинктивно считают математику важной дисциплиной ...

"Математику уже затем учить надо, что она ум в порядок приводит.
М.В.Ломоносов".

Однако, последователи тех, кто порол розгами будущих гениев, превратили Метод в нечто противоположное. Как 35 лет назад говорил мой научный руководитель: "Занаучили вопрос". Или как сказал вчера о методе Гаусса мой младший сын: "Может не стоит из этого большую науку делать-то, а?"

Последствия творчества "ученых" видны по уровню нынешней школьной математики, уровню ее преподавания и понимания "Царицы наук" большинством.

Однако, продолжим...

Методы объяснения метода Гаусса в 5 классе школы

Учитель математики московской гимназии, объясняя метод Гаусса по-Виленкину, усложнил задание.

Что, если разность (шаг) арифметической прогрессии будет не единица, а другое число? Например, 20.

Задача, которую он дал пятиклассникам:


20+40+60+80+ ... +460+480+500


Прежде, чем познакомиться с гимназическим методом, заглянем в Сеть: как это делают школьные учителя - репетиторы по математике?..

Метод Гаусса: объяснение №1

Известный репетитор на своем канале YOUTUBE приводит следующие рассуждения:

"запишем числа от 1 до 100 следующим образом:

сначала ряд чисел от 1 до 50, а строго под ним другой ряд чисел от 50 до 100, но в обратной последовательности"


1, 2, 3, ... 48, 49, 50

100, 99, 98 ... 53, 52, 51

"Обратите внимание: сумма каждой пары чисел из верхнего и нижнего рядов одинакова и равняется 101 ! Посчитаем количество пар, оно составляет 50 и умножим сумму одной пары на количество пар! Вуаля: Ответ готов!".

"Если вы не смогли понять - не расстраивайтесь!", - три раза в процессе объяснения повторил учитель. "Этот метод вы будете проходить в 9 классе!"

Метод Гаусса: объяснение №2

Другой репетитор, менее известный (судя по числу просмотров) использует более научный подход, предлагая алгоритм решения из 5 пунктов, которые необходимо выполнить последовательно.

Для непосвященных: 5 это одно из чисел Фибоначчи, традиционно считающееся магическим. Метод из 5 шагов всегда более научен, чем метод, например, из 6 шагов. ... И это вряд ли случайность, скорее всего, Автор - скрытый приверженец теории Фибоначчи

Дана арифметическая прогрессия: 4, 10, 16 ... 244, 250, 256 .

Алгоритм нахождения суммы чисел ряда методом Гаусса:


  • Шаг 1: переписать заданную последовательность чисел наоборот, точно под первой.
  • 4, 10, 16 ... 244, 250, 256

    256, 250, 244 ... 16, 10, 4

  • Шаг 2: посчитать суммы пар чисел, расположенных в вертикальных рядах: 260.
  • Шаг 3: посчитать, сколько таких пар в числовом ряду. Для этого вычесть из максимального числа числового ряда минимальное и разделить на величину шага: (256 - 4) / 6 = 42.
  • При этом нужно помнить о правиле "Плюс один" : к полученному частному необходимо прибавить единицу: иначе мы получим результат, меньший на единицу, чем истинное число пар: 42 + 1 = 43.

  • Шаг 4: умножить сумму одной пары чисел на количество пар: 260 х 43 = 11 180
  • Шаг5: поскольку мы посчитали сумму пар чисел , то полученную сумму следует разделить на два: 11 180 / 2 = 5590.
  • Это и есть искомая сумма арифметической прогрессии от 4 до 256 с разницей 6 !

    Метод Гаусса: объяснение в 5 классе московской гимназии

    А вот как требовалось решить задачу нахождения суммы ряда:

    20+40+60+ ... +460+480+500

    в 5 классе московской гимназии, учебник Виленкина (со слов моего сына).

    Показав презентацию, учительница математики показала пару примеров по методу Гаусса и дала классу задачу по нахождению суммы чисел ряда с шагом 20.

    При этом требовалось следующее:

  • Шаг 1: обязательно записать в тетради все числа ряда от 20 до 500 (с шагом 20).
  • Шаг 2: записать последовательно слагаемые - пары чисел: первого с последним, второго с предпоследним и т.д. и посчитать их суммы.
  • Шаг 3: посчитать "сумму сумм" и найти сумму всего ряда.
  • Как видим, это более компактная и эффективная методика: число 3 - также член последовательности Фибоначчи

    Мои комментарии к школьной версии метода Гаусса

    Великий математик определенно выбрал бы философию, если бы предвидел, во что превратят его "метод" последователи немецкого учителя , выпоровшего Карла розгами. Он узрел бы и символизм, и диалектическую спираль и неумирающую глупость "учителей", пытающихся измерить алгеброй непонимания гармонию живой математической мысли ....

    Между прочим: знаете ли вы. что наша система образования уходит корнями в немецкую школу 18 - 19 веков?

    Но Гаусс выбрал математику.

    В чем суть его метода?

    В упрощении . В наблюдении и схватывании простых закономерностей чисел. В превращении сухой школьной арифметики в интересное и увлекательное занятие , активизирующее в мозге желание продолжать, а не блокирующее высокозатратную умственную деятельность.

    Разве возможно одной из приведенных "модификаций метода" Гаусса посчитать сумму чисел арифметической прогрессии почти моментально ? По "алгоритмам" маленький Карл гарантированно избежал бы порки, воспитал отвращение к математике и подавил на корню свои творческие импульсы.

    Почему репетитор так настойчиво советовал пятиклассникам "не бояться непонимания" метода, убеждая, что "такие" задачи они будут решать аж в 9 классе? Психологически безграмотное действие . Удачным приемом было отметить : "Видите? Вы уже в 5 классе можете решать задачи, которые будете проходить только через 4 года! Какие вы молодцы!".

    Для использования метода Гаусса достаточно уровня 3 класса , когда нормальные дети уже умеют складывать, умножать и делить 2 -3 значные числа. Проблемы возникают из-за неспособности взрослых учителей, "не въезжающих", как объяснить простейшие вещи нормальным человеческим языком, не то что математическим... Не способных заинтересовать математикой и напрочь отбивающих охоту даже у "способных".

    Или, как прокомментировал мой сын: "делающих из этого большую науку".

  • Как (в общем случае) узнать, на каком именно числе следует "развернуть" запись чисел в методе № 1?
  • Что делать, если количество членов ряда окажется нечетным ?
  • Зачем превращать в "Правило плюс 1" то, что ребенок мог просто усвоить еще в первом классе, если бы развивал "чувство числа", а не запоминал "счет через десяток"?
  • И, наконец: куда исчез НОЛЬ, гениальное изобретение, которому более 2 000 лет и которым современные учителя математики избегают пользоваться?!.
  • Метод Гаусса, мои объяснения

    Нашему ребенку мы с супругой объясняли этот "метод", кажется, еще до школы...

    Простота вместо усложнения или игра в вопросы - ответы

    ""Посмотри, вот числа от 1 до 100. Что ты видишь?"

    Дело не в том, что именно увидит ребенок. Фокус в том, чтобы он стал смотреть.

    "Как можно их сложить?" Сын уловил, что такие вопросы не задаются "просто так" и нужно взглянуть на вопрос "как-то по-другому, иначе, чем он делает обычно"

    Не важно, увидит ли ребенок решение сразу, это маловероятно. Важно, чтобы он перестал бояться смотреть, или как я говорю: "шевелил задачу" . Это начало пути к пониманию

    "Что легче: сложить, например, 5 и 6 или 5 и 95?" Наводящий вопрос... Но ведь любое обучение и сводится к "наведению" человека на "ответ" - любым приемлемым для него способом.

    На этом этапе уже могут возникнуть догадки о том, как "сэкономить" на вычислениях.

    Все, что мы сделали - намекнули: "лобовой, линейный" метод счета - не единственно возможный. Если ребенок это усек, то впоследствии он выдумает еще много таких методов, ведь это интересно!!! И он точно избежит "непонимания" математики, не будет испытывать к ней отвращение. Он получил победу!

    Если ребенок обнаружил , что сложение пар чисел, дающих в сумме сотню, плевое занятие, то "арифметическая прогрессия с разницей 1" - довольно муторная и неинтересная для ребенка вещь - вдруг для него обрела жизнь . Из хаоса возник порядок, а это всегда вызывает энтузиазм: так мы устроены !

    Вопрос на засыпку: зачем после полученного ребенком озарения вновь загонять его в рамки сухих алгоритмов, к тому же функционально бесполезных в этом случае?!

    Зачем заставлять тупо переписывать числа последовательности в тетрадь: чтобы даже у способных не возникло и единого шанса на понимание? Статистически, конечно, а ведь массовое образование заточено на "статистику" ...

    Куда делся ноль?

    И все-таки складывать числа, дающие в сумме 100 для ума гораздо более приемлемо, чем дающие 101 ...

    "Школьный метод Гаусса" требует именно этого: бездумно складывать равноотстоящие от центра прогрессии пары чисел, несмотря ни на что .

    А если посмотреть?

    Все-таки ноль - величайшее изобретение человечества, которому более 2 000 лет. А учителя математики продолжают его игнорировать.

    Гораздо проще преобразовать ряд чисел, начинающийся с 1, в ряд, начинающийся с 0. Сумма ведь не изменится, не правда ли? Нужно перестать "думать учебниками" и начать смотреть... И увидеть, что пары с суммой 101 вполне можно заменить парами с суммой 100 !

    0 + 100, 1 + 99, 2 + 98 ... 49 + 51

    Как упразднить "правило плюс 1"?

    Если честно, то я о таком правиле впервые услышал от того ютубовского репетитора...

    Как я до сих пор поступаю, когда требуется определить количество членов какого-нибудь ряда?

    Смотрю на последовательность:

    1, 2, 3, .. 8, 9, 10

    а когда совсем устал, то на более простой ряд:

    1, 2, 3, 4, 5

    и прикидываю: если вычесть из 5 единицу, то получится 4, но я совершенно ясно вижу 5 чисел! Следовательно, нужно прибавить единицу! Чувство числа, развитое в начальной школе, подсказывает: даже если членов ряда будет целый гугл (10 в сотой степени), закономерность останется той же.

    На фиг правила?..

    Чтобы через пару - тройку лет заполнить все пространство между лбом и затылком и перестать соображать? А зарабатывать на хлеб с маслом как? Ведь мы ровными шеренгами движемся в эпоху цифровой экономики!

    Еще о школьном методе Гаусса: "зачем науку-то из этого делать?.."

    Я не зря разместил скриншот из тетрадки сына...

    "Что там было, на уроке?"

    "Ну, я сосчитал сразу, поднял руку, но она не спросила. Поэтому, пока остальные считали я стал делать ДЗ по русскому языку, чтобы не тратить время. Потом, когда остальные дописали (???), она вызвала меня к доске. Я сказал ответ."

    "Правильно, покажи, как ты решал", - сказала учительница. Я показал. Она сказала: "Неправильно, нужно считать так, как я показала!"

    "Хорошо, что двойку не поставила. И заставила написать в тетради "ход решения" по-ихнему. Зачем науку-то большую из этого делать?.."

    Главное преступление учителя математики

    Вряд ли после того случая Карл Гаусс испытал высокое чувство уважения по отношению к школьному учителю математики. Но если бы он знал, как последователи того учителя извратят самую суть метода ... он взревел бы от негодования и через Всемирную организацию интеллектуальной собственности ВОИС добился запрета на использование своего честного имени в школьных учебниках!..

    В чем главная ошибка школьного подхода ? Или, как я выразился - преступление школьных учителей математики против детей?

    Алгоритм непонимания

    Что делают школьные методисты, абсолютное большинство которых думать не умеет ни фига?

    Создают методики и алгоритмы (см. ). Это защитная реакция, предохраняющая учителей от критики ("Все делается согласно..."), а детей - от понимания. И таким образом - от желания критиковать учителей! (Вторая производная чиновничьей "мудрости", научный подход к проблеме ). Человек не улавливая смысл скорее будет пенять на собственное непонимание, а не на тупость школьной системы.

    Что и происходит: родители пеняют на детей, а учителя... то же на детей, "не понимающих математику!..

    Смекаете?

    Что сделал маленький Карл?

    Абсолютно нешаблонно подошел к шаблонной задаче . Это квинтэссенция Его подхода. Это главное, чему следует учить в школе: думать не учебниками, а головой . Конечно, есть и инструментальная составляющая, которую вполне можно использовать... в поисках более простых и эффективных методов счета .

    Метод Гаусса по-Виленкину

    В школе учат, что метод Гаусса состоит в том, чтобы

  • попарно находить суммы чисел, равноотстоящих от краев числового ряда, непременно начиная с краев !
  • находить число таких пар и т.д.
  • что, если число элементов ряда окажется нечетным , как в задаче, которую задали сыну?..

    "Подвох" состоит в том, что в этом случае следует обнаружить "лишнее" число ряда и прибавить его к сумме пар. В нашем примере это число 260 .

    Как обнаружить? Переписывая все пары чисел в тетрадь! (Именно почему учительница заставила детей делать эту тупую работу, пытаясь научить "творчеству" методом Гаусса... И именно поэтому такой "метод" практически неприменим к большим рядам данных, И именно поэтому он не является методом Гаусса).

    Немного творчества в школьной рутине...

    Сын же поступил иначе.

  • Сначала он отметил, что умножать легче число 500, а не 520
  • (20 + 500, 40 + 480 ...).

  • Потом он прикинул: количество шагов оказалось нечетным: 500 / 20 = 25.
  • Тогда он в начало ряда добавил НОЛЬ (хотя можно было и отбросить последний член ряда, что также обеспечило бы четность) и сложил числа, дающие в сумме 500
  • 0+500, 20+480, 40+460 ...

  • 26 шагов это 13 пар "пятисоток": 13 х 500 = 6500..
  • Если мы отбросили последний член ряда, то пар будет 12, но к результату вычислений следует не забыть прибавить "отброшенную" пятисотку. Тогда: (12 х 500) + 500 = 6500 !

  • Несложно, правда?

    А практически делается еще легче, что и позволяет выкроить 2-3 минуты на ДЗ по русскому, пока остальные "считают". К тому же сохраняет количество шагов методики: 5, что не позволяет критиковать подход за антинаучность.

    Явно этот подход проще, быстрее и универсальнее, в стиле Метода. Но... учительница не то, что не похвалила, но и заставила переписать "правильным образом" (см. скриншот). То есть предприняла отчаянную попытку задушить творческий импульс и способность понимать математику на корню! Видимо, чтобы потом наняться репетитором... Не на того напала...


    Все, что я так долго и нудно описал можно объяснить нормальному ребенку максимум за полчаса. Вместе с примерами.

    Причем так, что он это никогда не забудет.

    И это будет шаг к пониманию ... не только математики.

    Признайтесь: сколько раз в жизни вы складывали методом Гаусса? И я ни разу!

    Но инстинкт понимания , который развивается (или гасится) в процессе изучения математических методов в школе... О!.. Это поистине незаменимая вещь!

    Особенно в век всеобщей цифровизации, в который мы незаметно вошли под чутким руководством Партии и Правительства.

    Несколько слов в защиту учителей...

    Несправедливо и неправильно всю ответственность за такой стиль обучения сваливать исключительно на школьных учителей. Действует система.

    Некоторые учителя понимают абсурдность происходящего, но что делать? Закон об образовании, ФГОСы, методики, технологические карты уроков... Все должно делаться "в соответствии и на основании" и все должно быть задокументировано. Шаг в сторону - встал в очередь на увольнение. Не будем ханжами: зарплата московских учителей ну очень неплохая... Уволят - куда идти?..

    Поэтому сайт этот не об образовании . Он об индивидуальном образовании , единственно возможном способе выбраться из толпы поколения Z ...

    Пусть дана система , ∆≠0. (1)
    Метод Гаусса – это метод последовательного исключения неизвестных.

    Суть метода Гаусса состоит в преобразовании (1) к системе с треугольной матрицей , из которой затем последовательно (обратным ходом) получаются значения всех неизвестных. Рассмотрим одну из вычислительных схем. Эта схема называется схемой единственного деления. Итак, рассмотрим эту схему. Пусть a 11 ≠0 (ведущий элемент) разделим на a 11 первое уравнение. Получим
    x 1 +a (1) 12 ·x 2 +...+a (1) 1n ·x n =b (1) 1 (2)
    Пользуясь уравнением (2), легко исключить неизвестные x 1 из остальных уравнений системы (для этого достаточно из каждого уравнения вычесть уравнение (2) предварительно умноженное на соответствующий коэффициент при x 1), то есть на первом шаге получим
    .
    Иными словами, на 1 шаге каждый элемент последующих строк, начиная со второй, равен разности между исходным элементом и произведением его «проекции» на первый столбец и первую (преобразованную) строку.
    Вслед за этим оставив первое уравнение в покое, над остальными уравнениями системы, полученной на первом шаге, совершим аналогичное преобразование: выберем из их числа уравнение с ведущим элементом и исключим с его помощью из остальных уравнений x 2 (шаг 2).
    После n шагов вместо (1) получим равносильную систему
    (3)
    Таким образом, на первом этапе мы получим треугольную систему (3). Этот этап называется прямым ходом.
    На втором этапе (обратный ход) мы находим последовательно из (3) значения x n , x n -1 , …, x 1 .
    Обозначим полученное решение за x 0 . Тогда разность ε=b-A·x 0 называется невязкой .
    Если ε=0, то найденное решение x 0 является верным.

    Вычисления по методу Гаусса выполняются в два этапа:

    1. Первый этап называется прямым ходом метода. На первом этапе исходную систему преобразуют к треугольному виду.
    2. Второй этап называется обратным ходом. На втором этапе решают треугольную систему, эквивалентную исходной.
    Коэффициенты а 11 , а 22 , …, называют ведущими элементами.
    На каждом шаге предполагалось, что ведущий элемент отличен от нуля. Если это не так, то в качестве ведущего можно использовать любой другой элемент, как бы переставив уравнения системы.

    Назначение метода Гаусса

    Метод Гаусса предназначен для решения систем линейных уравнений. Относится к прямым методам решения.

    Виды метода Гаусса

    1. Классический метод Гаусса;
    2. Модификации метода Гаусса. Одной из модификаций метода Гаусса является схема с выбором главного элемента. Особенностью метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k -ом шаге ведущим элементом оказывался наибольший по модулю элемент k -го столбца.
    3. Метод Жордано-Гаусса;
    Отличие метода Жордано-Гаусса от классического метода Гаусса состоит в применении правила прямоугольника , когда направление поиска решения происходит по главной диагонали (преобразование к единичной матрице). В методе Гаусса направление поиска решения происходит по столбцам (преобразование к системе с треугольной матрицей).
    Проиллюстрируем отличие метода Жордано-Гаусса от метода Гаусса на примерах.

    Пример решения методом Гаусса
    Решим систему:



    Умножим 2-ую строку на (2). Добавим 3-ую строку к 2-ой



    Из 1-ой строки выражаем x 3:
    Из 2-ой строки выражаем x 2:
    Из 3-ой строки выражаем x 1:

    Пример решения методом Жордано-Гаусса
    Эту же СЛАУ решим методом Жордано-Гаусса.

    Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
    Разрешающий элемент равен (1).



    НЭ = СЭ - (А*В)/РЭ
    РЭ - разрешающий элемент (1), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
    Представим расчет каждого элемента в виде таблицы:

    x 1 x 2 x 3 B
    1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


    Разрешающий элемент равен (3).
    На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
    Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
    Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
    x 1 x 2 x 3 B
    0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


    Разрешающий элемент равен (-4).
    На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
    Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
    Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
    Представим расчет каждого элемента в виде таблицы:
    x 1 x 2 x 3 B
    0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


    Ответ : x 1 = 1, x 2 = 1, x 3 = 1

    Реализация метода Гаусса

    Метод Гаусса реализован на многих языках программирования, в частности: Pascal, C++, php, Delphi , а также имеется реализация метода Гаусса в онлайн режиме .

    Использование метода Гаусса

    Применение метода Гаусса в теории игр

    В теории игр при отыскании максиминной оптимальной стратегии игрока составляется система уравнений, которая решается методом Гаусса.

    Применение метода Гаусса при решении дифференциальных уравнений

    Для поиска частного решения дифференциального уравнения сначала находят производные соответствующей степени для записанного частного решения (y=f(A,B,C,D)), которые подставляют в исходное уравнение. Далее, чтобы найти переменные A,B,C,D составляется система уравнений, которая решается методом Гаусса.

    Применение метода Жордано-Гаусса в линейном программировании

    В линейном программировании, в частности в симплекс-методе для преобразования симплексной таблицы на каждой итерации используется правило прямоугольника, в котором используется метод Жордано-Гаусса.

    Примеры

    Пример №1 . Решить систему методом Гаусса:
    x 1 +2x 2 - 3x 3 + x 4 = -2
    x 1 +2x 2 - x 3 + 2x 4 = 1
    3x 1 -x 2 + 2x 3 + x 4 = 3
    3x 1 +x 2 + x 3 + 3x 4 = 2

    Для удобства вычислений поменяем строки местами:

    Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой





    Для удобства вычислений поменяем строки местами:







    Из 1-ой строки выражаем x 4

    Из 2-ой строки выражаем x 3

    Из 3-ой строки выражаем x 2

    Из 4-ой строки выражаем x 1

    Пример №3 .

    1. Решить СЛАУ методом Жордано-Гаусса. Запишем систему в виде: Разрешающий элемент равен (2.2). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника. x 1 = 1.00, x 2 = 1.00, x 3 = 1.00
    2. Систему линейных уравнений решить методом Гаусса
      Пример

      Посмотрите, как быстро можно определить, является ли система совместной

      Видеоинструкция

    3. Применяя метод Гаусса исключения неизвестных, решить систему линейных уравнений. Сделать проверку найденного решения: Решение
    4. Решить систему уравнений методом Гаусса. Рекомендуется преобразования, связанные с последовательным исключением неизвестных, применять к расширенной матрице данной системы. Сделать проверку полученного решения.
      Решение :xls
    5. Решить систему линейных уравнений тремя способами: а) методом Гаусса последовательных исключений неизвестных; б) по формуле x = A -1 b с вычислением обратной матрицы A -1 ; в) по формулам Крамера.
      Решение :xls
    6. Решить методом Гаусса следующую вырожденную систему уравнений.
      Скачать решение doc
    7. Решите методом Гаусса систему линейных уравнений записанную в матричной форме:
      7 8 -3 x 92
      2 2 2 y = 30
      -9 -10 5 z -114

    Решение системы уравнений методом сложения

    Решите 6x+5y=3, 3x+3y=4 систему уравнений методом сложения.
    Решение.
    6x+5y=3
    3x+3y=4
    Умножим второе уравнение на (-2).
    6x+5y=3
    -6x-6y=-8
    ============ (складываем)
    -y=-5
    Откуда y = 5
    Находим x:
    6x+5*5=3 или 6x=-22
    Откуда x = -22/6 = -11/3

    Пример №2 . Решение СЛАУ в матричной форме означает, что исходную запись системы необходимо привести к матричной (так называемая расширенная матрица). Покажем это на примере.
    Запишем систему в виде расширенной матрицы:

    2 4 3
    -2 5 4
    3 0 1
    9
    7
    4
    Добавим 2-ую строку к 1-ой:
    0 9 7
    -2 5 4
    3 0 1
    16
    7
    4
    Умножим 2-ую строку на (3). Умножим 3-ую строку на (2). Добавим 3-ую строку к 2-ой:
    0 9 7
    0 15 14
    3 0 1
    16
    29
    4
    Умножим 1-ую строку на (15). Умножим 2-ую строку на (-9). Добавим 2-ую строку к 1-ой:
    0 0 -21
    0 15 14
    3 0 1
    -21
    29
    4
    Теперь исходную систему можно записать как:
    x 3 = -21/(-21) = 1
    x 2 = /15
    x 1 = /3
    Из 2-ой строки выражаем x 2:
    Из 3-ой строки выражаем x 1:

    Пример №3 . Решить систему методом Гаусса: x 1 +2x 2 - 3x 3 + x 4 = -2
    x 1 +2x 2 - x 3 + 2x 4 = 1
    3x 1 -x 2 + 2x 3 + x 4 = 3
    3x 1 +x 2 + x 3 + 3x 4 = 2

    Решение:
    Запишем систему в виде:
    Для удобства вычислений поменяем строки местами:

    Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой

    Умножим 2-ую строку на (3). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой

    Умножим 4-ую строку на (-1). Добавим 4-ую строку к 3-ой

    Для удобства вычислений поменяем строки местами:

    Умножим 1-ую строку на (0). Добавим 2-ую строку к 1-ой

    Умножим 2-ую строку на (7). Умножим 3-ую строку на (2). Добавим 3-ую строку к 2-ой

    Умножим 1-ую строку на (15). Умножим 2-ую строку на (2). Добавим 2-ую строку к 1-ой

    Из 1-ой строки выражаем x 4

    Из 2-ой строки выражаем x 3

    Из 3-ой строки выражаем x 2

    Из 4-ой строки выражаем x 1

    Одним из простейших способов решения системы линейных уравнений является прием, основанный на вычислении определителей (правило Крамера ). Его преимущество состоит в том, что он позволяет сразу провести запись решения, особенно он удобен в тех случаях, когда коэффициенты системы являются не числами, а какими-то параметрами. Его недостаток – громоздкость вычислений в случае большого числа уравнений, к тому же правило Крамера непосредственно не применимо к системам, у которых число уравнений не совпадает с числом неизвестных. В таких случаях обычно применяют метод Гаусса .

    Системы линейных уравнений, имеющие одно и то же множество решений, называются эквивалентными . Очевидно, что множество решений линейной системы не изменится, если какие-либо уравнения поменять местами, или умножить одно из уравнений на какое-либо ненулевое число, или если одно уравнение прибавить к другому.

    Метод Гаусса (метод последовательного исключения неизвестных ) заключается в том, что с помощью элементарных преобразований система приводится к эквивалентной системе ступенчатого вида. Сначала с помощью 1-го уравнения исключается x 1 из всех последующих уравнений системы. Затем с помощью2-го уравнения исключается x 2 из 3-го и всех последующих уравнений. Этот процесс, называемый прямым ходом метода Гаусса , продолжается до тех пор, пока в левой части последнего уравнения останется только одно неизвестное x n . После этого производится обратный ход метода Гаусса – решая последнее уравнение, находим x n ; после этого, используя это значение, из предпоследнего уравнения вычисляем x n –1 и т.д. Последним находим x 1 из первого уравнения.

    Преобразования Гаусса удобно проводить, осуществляя преобразования не с самими уравнениями, а с матрицами их коэффициентов. Рассмотрим матрицу:

    называемую расширенной матрицей системы, ибо в нее, кроме основной матрицы системы, включен столбец свободных членов. Метод Гаусса основан на приведении основной матрицы системы к треугольному виду (или трапециевидному виду в случае неквадратных систем) при помощи элементарных преобразованиях строк (!) расширенной матрицы системы.

    Пример 5.1. Решить систему методом Гаусса:

    Решение . Выпишем расширенную матрицу системы и, используя первую строку, после этого будем обнулять остальные элементы:

    получим нули во 2-й, 3-й и 4-й строках первого столбца:


    Теперь нужно чтобы все элементы во втором столбце ниже 2-й строки были равны нулю. Для этого можно умножить вторую строку на –4/7 и прибавить к 3-й строке. Однако чтобы не иметь дело с дробями, создадим единицу во 2-й строке второго столбца и только

    Теперь, чтобы получить треугольную матрицу, нужно обнулить элемент четвертой строки 3-го столбца, для этого можно умножить третью строку на 8/54 и прибавить ее к четвертой. Однако чтобы не иметь дело с дробями поменяем местами 3-ю и 4-ю строки и 3-й и 4-й столбец и только после этого произведем обнуление указанного элемента. Заметим, что при перестановке столбцов меняются местами, соответствующие переменные и об этом нужно помнить; другие элементарные преобразования со столбцами (сложение и умножение на число) производить нельзя!


    Последняя упрощенная матрица соответствует системе уравнений, эквивалентной исходной:

    Отсюда, используя обратный ход метода Гаусса, найдем из четвертого уравнения x 3 = –1; из третьего x 4 = –2, из второго x 2 = 2 и из первого уравнения x 1 = 1. В матричном виде ответ записывается в виде

    Мы рассмотрели случай, когда система является определенной, т.е. когда имеется только одно решение. Посмотрим, что получится, если система несовместна или неопределенна.

    Пример 5.2. Исследовать систему методом Гаусса:

    Решение . Выписываем и преобразуем расширенную матрицу системы

    Записываем упрощенную систему уравнений:

    Здесь, в последнем уравнении получилось, что 0=4, т.е. противоречие. Следовательно, система не имеет решения, т.е. она несовместна . à

    Пример 5.3. Исследовать и решить систему методом Гаусса:

    Решение . Выписываем и преобразуем расширенную матрицу системы:

    В результате преобразований, в последней строке получились одни нули. Это означает, что число уравнений уменьшилось на единицу:

    Таким образом, после упрощений осталось два уравнения, а неизвестных четыре, т.е. два неизвестных "лишних". Пусть "лишними", или, как говорят, свободными переменными , будут x 3 и x 4 . Тогда

    Полагая x 3 = 2a и x 4 = b , получим x 2 = 1–a и x 1 = 2b a ; или в матричном виде

    Записанное подобным образом решение называется общим , поскольку, придавая параметрам a и b различные значения, можно описать все возможные решения системы. à

    В данной статье мы:

    • дадим определение методу Гаусса,
    • разберем алгоритм действий при решении линейных уравнений, где количество уравнений совпадает c количеством неизвестных переменных, а определитель не равен нулю;
    • разберем алгоритм действий при решении СЛАУ с прямоугольной или вырожденной матрицей.

    Метод Гаусса - что это такое?

    Определение 1

    Метод Гаусса - это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:

    • отсутствует необходимость проверять систему уравнений на совместность;
    • есть возможность решать системы уравнений, где:
    • количество определителей совпадает с количеством неизвестных переменных;
    • количество определителей не совпадает с количеством неизвестных переменных;
    • определитель равен нулю.
    • результат выдается при сравнительно небольшом количестве вычислительных операций.

    Основные определения и обозначения

    Пример 1

    Есть система из р линейных уравнений с n неизвестными (p может быть равно n):

    a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,

    где x 1 , x 2 , . . . . , x n - неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n - числа (действительные или комплексные), b 1 , b 2 , . . . , b n - свободные члены.

    Определение 2

    Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной , если наоборот - неоднородной .

    Определение 3

    Решение СЛАУ - совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.

    Определение 4

    Совместная СЛАУ - система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.

    Определение 5

    Определенная СЛАУ - это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.

    Определение 6

    Координатный вид записи:

    a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p

    Определение 7

    Матричный вид записи: A X = B , где

    A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n - основная матрица СЛАУ;

    X = x 1 x 2 ⋮ x n - матрица-столбец неизвестных переменных;

    B = b 1 b 2 ⋮ b n - матрица свободных членов.

    Определение 8

    Расширенная матрица - матрица, которая получается при добавлении в качестве (n + 1) столбца матрицу-столбец свободных членов и имеет обозначение Т.

    T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n

    Определение 9

    Вырожденная квадратная матрица А - матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.

    Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)

    Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.

    Определение 10

    Прямой ход Гаусса - процесс последовательного исключения неизвестных.

    Определение 11

    Обратный ход Гаусса - процесс последовательного нахождения неизвестных от последнего уравнения к первому.

    Алгоритм метода Гаусса:

    Пример 2

    Решаем систему из n линейных уравнений с n неизвестными переменными:

    a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n

    Определитель матрицы не равен нулю .

    1. a 11 не равен нулю - всегда можно добиться этого перестановкой уравнений системы;
    2. исключаем переменную x 1 из всех уравнений систему, начиная со второго;
    3. прибавим ко второму уравнению системы первое, которое умножено на - a 21 a 11 , прибавим к третьему уравнению первое умноженное на - a 21 a 11 и т.д.

    После проведенных действий матрица примет вид:

    a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (1) 32 x 2 + a (1) 33 x 3 + . . . + a (1) 3 n x n = b (1) 3 ⋯ a (1) n 2 x 2 + a (1) n 3 x 3 + . . . + a (1) n n x n = b (1) n ,

    где a i j (1) = a i j + a 1 j (- a i 1 a 11) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i (1) = b i + b 1 (- a i 1 a 11) , i = 2 , 3 , . . . , n .

    a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (1) 32 x 2 + a (1) 33 x 3 + . . . + a (1) 3 n x n = b (1) 3 ⋯ a (1) n 2 x 2 + a (1) n 3 x 3 + . . . + a (1) n n x n = b (1) n

    Считается, что a 22 (1) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:

    • к третьему уравнению систему прибавляем второе, которое умножено на - a (1) 42 a (1) 22 ;
    • к четвертому прибавляем второе, которое умножено на - a (1) 42 a (1) 22 и т.д.

    После таких манипуляций СЛАУ имеет следующий вид :

    a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (2) 33 x 3 + . . . + a (2) 3 n x n = b (2) 3 ⋯ a (2) n 3 x 3 + . . . + a (2) n n x n = b (2) n ,

    где a i j (2) = a (1) i j + a 2 j (- a (1) i 2 a (1) 22) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i (2) = b (1) i + b (1) 2 (- a (1) i 2 a (1) 22) , i = 3 , 4 , . . . , n . .

    Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

    a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (2) 33 x 3 + . . . + a (2) 3 n x n = b (2) 3 ⋯ a (n - 1) n n x n = b (n - 1) n

    Примечание

    После того как система приняла такой вид, можно начать обратный ход метода Гаусса :

    • вычисляем x n из последнего уравнения как x n = b n (n - 1) a n n (n - 1) ;
    • с помощью полученного x n находим x n - 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.

    Пример 3

    Найти решение системы уравнений методом Гаусса:

    Как решать?

    Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на - a 21 a 11:

    1 3 , - а 31 а 11 = - - 2 3 = 2 3 и - а 41 а 11 = - 1 3 .

    3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4 ⇔

    ⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 + (- 1 3) (3 x 1 + 2 x 2 + x 3 + x 4) = - 1 + (- 1 3) (- 2) - 2 x 1 - 2 x 2 - 3 x 3 + x 4 + 2 3 (3 x 1 + 2 x 2 + x 3 + x 4) = 9 + 2 3 (- 2) x 1 + 5 x 2 - x 3 + 2 x 4 + (- 1 3) (3 x 1 + 2 x 2 + x 3 + x 4) = 4 + (- 1 3) (- 2) ⇔

    ⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 - 4 3 x 3 + 5 3 x 4 = 14 3

    Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2:

    A 32 (1) a 22 (1) = - - 2 3 - 5 3 = - 2 5 и а 42 (1) а 22 (1) = - 13 3 - 5 3 = 13 5:

    3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 - 4 3 x 3 + 5 3 x 4 = 14 3 ⇔

    ⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 + (- 2 5) (- 5 3 x 2 + 11 3 x 3 - 4 3 x 4) = 23 3 + (- 2 5) (- 1 3) 13 3 x 2 - 4 3 x 3 + 5 3 x 4 + 13 5 (- 5 3 x 2 + 11 3 x 3 - 4 3 x 4) = 14 3 + 13 5 (- 1 3) ⇔

    ⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 = 19 5

    Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы - а 43 (2) а 33 (2) = - 41 5 - 19 5 = 41 19:

    3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 = 19 5 ⇔

    3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 + 41 19 (- 19 5 x 3 + 11 5 x 4) = 19 5 + 41 19 39 5 ⇔

    ⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19

    Обратный ход метода Гаусса:

    • из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
    • из 3-го уравнения получаем: x 3 = - 5 19 (39 5 - 11 5 x 4) = - 5 19 (39 5 - 11 5 × 7) = 38 19 = 2 ;
    • из 2-го: x 2 = - 3 5 (- 1 3 - 11 3 x 4 + 4 3 x 4) = - 3 5 (- 1 3 - 11 3 × 2 + 4 3 × 7) = - 1 ;
    • из 1-го: x 1 = 1 3 (- 2 - 2 x 2 - x 3 - x 4) = - 2 - 2 × (- 1) - 2 - 7 3 = - 9 3 = - 3 .

    Ответ : x 1 = - 3 ; x 2 = - 1 ; x 3 = 2 ; x 4 = 7

    Пример 4

    Найти решение этого же примера методом Гаусса в матричной форме записи:

    3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4

    Как решать?

    Расширенная матрица системы представлена в виде:

    x 1 x 2 x 3 x 4 3 2 1 1 1 - 1 4 - 1 - 2 - 2 - 3 1 1 5 - 1 2 - 2 - 1 9 4

    Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.

    Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на - a 21 a 11 = - 1 3 , - a 31 a 11 = - - 2 3 = 2 3 и н а - а 41 а 11 = - 1 3 .

    Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной. Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на - а 32 (1) а 22 (1) = - 2 3 - 5 3 = - 2 5 и - а 42 (1) а 22 (1) = - 13 3 - 5 3 = 13 5:

    x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 - 2 3 - 7 3 5 3 | 23 3 0 13 3 - 4 3 5 3 | 14 3 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 - 2 3 + (- 2 5) (- 5 3) - 7 3 + (- 2 5) 11 3 5 3 + (- 2 5) (- 4 3) | 23 3 + (- 2 5) (- 1 3) 0 13 3 + 13 5 (- 5 3) - 4 3 + 13 5 × 11 3 5 3 + 13 5 (- 4 3) | 14 3 + 13 5 (- 1 3) ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 - 9 5 | 19 5

    Теперь исключаем переменную x 3 из последнего уравнения - прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 (2) а 33 (2) = - 41 5 - 19 5 = 41 19 .

    x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 - 9 5 | 19 5 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 + 41 19 (- 19 5) - 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

    Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:

    x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

    стала диагональной, т.е. приняла следующий вид:

    x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 - 5 3 0 0 | а 2 0 0 - 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 - некоторые числа.

    Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на

    11 5 56 19 = - 209 280 , н а - - 4 3 56 19 = 19 42 и н а - 1 56 19 = 19 56 .

    x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 1 + (- 19 56) 56 19 | - 2 + (- 19 56) 392 19 0 - 5 3 11 3 - 4 3 + 19 42 × 56 19 | - 1 3 + 19 42 × 392 19 0 0 - 19 5 11 5 + (- 209 280) 56 19 | 39 5 + (- 209 280) 392 19 0 0 0 56 19 | 392 19 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 0 | - 9 0 - 5 3 11 3 0 | 9 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

    11 3 - 19 5 = 55 57 и н а - 1 - 19 5 = 5 19 .

    x 1 x 2 x 3 x 4 3 2 1 0 | - 9 0 - 5 3 11 3 0 | 9 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 + 5 19 (- 19 5) 0 | - 9 + 5 19 (- 38 5) 0 - 5 3 11 3 + 55 57 (- 19 5) 0 | 9 + 55 57 (- 38 5) 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

    x 1 x 2 x 3 x 4 ~ 3 2 1 0 | - 11 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

    На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на - 2 - 5 3 = 6 5 .

    x 1 x 2 x 3 x 4 3 2 1 0 | - 11 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

    x 1 x 2 x 3 x 4 ~ 3 2 + 6 5 (- 5 3) 0 0 | - 11 + 6 5 × 5 3) 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

    x 1 x 2 x 3 x 4 ~ 3 0 0 0 | - 9 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

    Полученная матрица соответствует системе уравнений

    3 x 1 = - 9 - 5 3 x 2 = 5 3 - 19 5 x 3 = - 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.

    Ответ: x 1 = - 3 , x 2 = - 1 , x 3 = 2 , x 4 = 7 . ​​​

    Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы

    Определение 2

    Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.

    Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.

    В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.

    Пример 5

    На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.

    Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:

    x 1 + 2 x 2 - x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 - 2 x 3 + 6 x 4 = 14 x - x + 3 x + x = - 1 ⇔

    x 1 + 2 x 2 - x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 - 2 x 3 + 6 x 4 + (- 2) (x 1 + 2 x 2 - x 3 + 3 x 4) = 14 + (- 2) × 7 x - x + 3 x + x + (- 1) (x 1 + 2 x 2 - x 3 + 3 x 4) = - 1 + (- 1) × 7 ⇔

    ⇔ x 1 + 2 x 2 - x 3 + 3 x 4 = 7 0 = 0 - 3 x 2 + 4 x 3 - 2 x 4 = - 8

    Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.

    Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид - некоторое число, которое отлично от нуля.

    Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).

    Итог:

    • В случае если при проведении прямого хода метода Гаусса одно или несколько уравнений принимают вид 0 = λ , где λ - некоторое число, которое отлично от нуля, то система несовместна.
    • Если же в конце прямого хода метода Гаусса получается система, число уравнений которой совпадает с количеством неизвестных, то такая система совместна и определена: имеет единственное решение, которое вычисляется обратным ходом метода Гаусса.
    • Если при завершении прямого хода метода Гаусса число уравнений в системе оказывается меньше количества неизвестных, то такая система совместна и имеет бесконечно количество решений, которые вычисляются при обратном ходе метода Гаусса.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Загрузка...
    Top