Космическая сингулярность. Большой взрыв новая модель большого взрыва сингулярное состояние вещества гиперинфляция вселенной алан гут андрей линде александр виленкин реликтовое излучение темная материя энергия мультиверс гибель солнца системы закат вселен

Характеризующееся бесконечной плотностью и температурой вещества. Космологическая сингулярность является одним из примеров гравитационных сингулярностей , предсказываемых общей теорией относительности (ОТО) и некоторыми другими теориями гравитации .

Возникновение этой сингулярности при продолжении назад во времени любого решения ОТО , описывающего динамику расширения Вселенной , было строго доказано в 1967 году Стивеном Хокингом . Также он писал:

«Результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определённый момент времени. Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики».

Например, не могут быть одновременно бесконечными плотность и температура, т. к. при бесконечной плотности мера хаоса стремится к нулю, что не может совмещаться с бесконечной температурой. Проблема существования космологической сингулярности является одной из наиболее серьёзных проблем физической космологии. Дело в том, что никакие наши сведения о том, что произошло после Большого Взрыва, не могут дать нам никакой информации о том, что происходило до этого.

Попытки решения проблемы существования этой сингулярности идут в нескольких направлениях: во-первых, считается, что квантовая гравитация даст описание динамики гравитационного поля, свободного от сингулярностей , во-вторых, есть мнение, что учёт квантовых эффектов в негравитационных полях может нарушить условие энергодоминантности, на котором базируется доказательство Хокинга , в-третьих, предлагаются такие модифицированные теории гравитации , в которых сингулярность не возникает, так как предельно сжатое вещество начинает расталкиваться гравитационными силами (так называемое гравитационное отталкивание), а не притягиваться друг к другу.

Примечания


Wikimedia Foundation . 2010 .

  • Кларк, Джон Д.
  • Ричард Тайлер

Смотреть что такое "Космологическая сингулярность" в других словарях:

    Сингулярность - В Викисловаре есть статья «сингулярность» Сингулярность от лат. … Википедия

    СИНГУЛЯРНОСТЬ КОСМОЛОГИЧЕСКАЯ - (от лат. singularis отдельный … Физическая энциклопедия

    СИНГУЛЯРНОСТЬ - космологическая (от лат. singularis отдельный, особый), состояние Вселенной в определённый момент времени в прошлом, когда плотн. энергии материи и кривизна пространства времени были очень высоки (физ. С.) или даже бесконечны (матем. С.). Это… … Естествознание. Энциклопедический словарь

    Гравитационная сингулярность - У этого термина существуют и другие значения, см. Сингулярность. Гравитационная сингулярность (иногда сингулярность пространства времени) точка (или подмножество) в пространстве времени, через которую невозможно гладко продолжить входящую в … Википедия

    Космологические модели - Космология Изучаемые объекты и процессы … Википедия

    Большой взрыв - по современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда средняя плотность Вселенной в огромное число раз превышала современную. Из за расширения средняя плотность Вселенной убывает с течением… … Энциклопедический словарь

    Модель Вселенной - современная Основные качественные выводы, следующие из анализа фридмановской модели (см. Модели Вселенной): Вселенная нестационарна (она расширяется), плотности энергии вещества, и излучения монотонно падают с течением времени; в прошлом… … Концепции современного естествознания. Словарь основных терминов

    БОЛЬШОЙ ВЗРЫВ Современная энциклопедия

    БОЛЬШОЙ ВЗРЫВ - по современным представлениям состояние расширяющейся Вселенной в прошлом (ок. 13 млрд. лет назад), когда средняя плотность Вселенной в огромное число раз превышала современную. Из за расширения средняя плотность Вселенной убывает с течением… … Большой Энциклопедический словарь

    Большой взрыв - БОЛЬШОЙ ВЗРЫВ, по современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда ее средняя плотность в огромное число раз превышала нынешнюю. Из за расширения средняя плотность Вселенной убывает с… … Иллюстрированный энциклопедический словарь

Космологическая сингулярность – теоретическое построение некоего состояния, в котором находилась Вселенная в начальный момент . Особенность этого состояния в том, что оно характеризуется бесконечной плотностью и одновременно бесконечной температурой.

Возникновение понятия

Космологическая сингулярность является частным случаем гравитационной сингулярности. Если мы привыкли рассматривать материю как некоторое гладкое и бескрайнее пространство (многообразие), то в области гравитационной сингулярности пространство-время искривляется. В 1915 — 1916 г. великий физик Альберт Эйнштейн опубликовал свою , согласно которой гравитационные эффекты существуют не как следствие работы каких-либо сил, возникающих между телами или в полях, а вследствие искажения самого пространства-времени. При помощи своих уравнений Эйнштейн смог описать связь кривизны пространства-времени и материи, которая находится в нем.

Позже, в 1967-м году Стивен Хокинг использовал уравнения Эйнштейна для общей теории относительности, которые описывают динамику Вселенной, чтобы получить их решения для прошедшего времени. То есть он определил состояние Вселенной в изначальный момент ее существования, и доказал, что таковой момент действительно есть.

Гравитационная сингулярность

Точно описать гравитационную сингулярность пока не удается по той причине, что многие известные величины в ее пределах устремляются к бесконечности либо становятся неопределенными. Например, плотность энергии выбранной системы отсчета этой области или скалярная кривизна.

Благодаря трудам физиков-теоретиков мы имеем строгие доказательства того, что в сердцах черных дыр, а именно за должна располагаться такая гравитационная сингулярность, иначе черная дыры просто не сформировалась бы. К сожалению, наблюдать что-либо находящееся за горизонтом событий невозможно в принципе, хотя есть предположения, что существуют черные дыры, сингулярность которых немного выходит за его пределы и может быть наблюдаема. Космологическая же сингулярность называется «голой», так как теоретически ее можно было бы увидеть.

Свойства, парадоксы и следствия космологической сингулярности

Основные характеристики сингулярности – одновременно бесконечные температура и плотность вещества. Подобное явление можно попытаться представить как сосредоточение бесконечно большой массы в бесконечно малом объеме. Однако согласно физическим расчетам эти две величины не могут одновременно стремиться к бесконечности. Как известно, температура тесно связана с - мерой хаоса, которая с увеличением плотности может лишь уменьшаться, как собственно и температура.

Достоверно известно, что существует определенный момент во времени, в который из сингулярности зародилась Вселенная. Но никакие знания о том, что было до сингулярности, из расчетов или наблюдений мы получить не можем. Также не может быть найдена центральная точка, сердцевина из которой произошел Большой Взрыв. А самое главное, каким образом космологическая сингулярность породила немыслимые нашей Вселенной.

К сожалению, на сегодня разработанные физические конструкции не могут объяснить наличие такого явления, как сингулярность, так как в ее области все существующие законы физики не применимы. Как сказал известный физик современности Митио Каку: «мы называем сингулярностью то, что не можем понять».

Новый этап в развитии современной космологии наступил после работ Фридмана (1922 г.).

Используя релятивистскую теорию тяготения Эйнштейна, он получил математическую модель движения вещества во всей Вселенной под действием сил тяготения. Фридман доказал, что вещество Вселенной не может находиться в покое, т.е. Вселенная нестационарная: она должна либо сжиматься, либо расширяться. Из теории Фридмана следует, что наша Вселенная возникла из состояния космологической сингулярности.

В 1948 г. Гамов, Альфер и Херман предложили вариант возникновения горячей Вселенной как результат "Большого Взрыва" вещества.

Основная идея гипотезы горячей Вселенной заключалась в том, чтобы процессы протекания термоядерных реакций в самом начале расширения Вселенной после взрыва и по мере дальнейшей ее эволюции привели к наблюдаемому в космосе в настоящее время соотношению между количеством различных химических элементов и их изотопов.

Наблюдения за различными объектами Вселенной: горячими звездами, большими газовыми туманностями, гигантскими молекулярными облаками, Солнцем, космическими лучами, квазарами, галактиками и т. д. показазали, что в них, по массе, обнаруживается 25  27% гелия, 70  72% водорода и малая примесь остальных химических элементов, доля которых меняется от объекта к объекту, а содержание гелия и водорода постоянно.

Но до образования небесных тел (галактик, звезд и т.д.) вещество Вселенной однородно (все четыре силовых взаимодействий представляет одно "суперобъединение" при температуре T10 32 К) и ни каких перепадов давления не имелось, следовательно, не было и силы, в результате которой и началось стремительное расширение. Особую роль при этом сыграл физический вакуум. Причем он в зависимости от условий может быть разным.

В нем вместе с плотностью энергии (из-за взаимодействия виртуальных частиц) одновременно возникают натяжения (подобно силам натяжения, возникающим при растяжении, например металлического стержня). Эти натяжения эквивалентны отрицательному давлению, т.е. как бы возникает отрицательное давление. В обычных средах натяжения и давления составляют малую долю полной плотности энергии. В физическом вакууме отрицательное давление огромно и по абсолютной величине равно плотности энергии. По мере расширения Вселенной (происходит понижение температуры) симметрия между электромагнитным и слабым взаимодействием нарушается. Как известно, слабое взаимодействие связывают с наличием особых зарядов (отличных от электрических зарядов, между которыми осуществляется электромагнитное взаимодействие с помощью фотонов) и это взаимодействие происходит на очень малых расстояниях.

Это связано, прежде всего, с большой массой переносчиков слабого взаимодействия W + , W  и Z o - бозонов. Однако при температуре выше T10 15 К, как показывает расчет, существует единое электрослабое взаимодействие между частицами.

Его переносчики W + , W  и Z o - бозоны и -фотоны имеются в изобилии и не обладают массой. Нет массы у кварков и лептонов.Спустя несколько минут после расширения Вселенной температура упала до 10 9 К.

При таких температурах уже стало возможным соединение протонов и нейтронов с образованием ядер дейтерия, которые в результате термоядерных реакций приводили к образованию ядер атомов гелия.

Но из-за продолжающегося расширения Вселенной и снижения температуры термоядерные реакции ранней Вселенной прекращались.

За 5 минут успело образоваться около 25% гелия, а 75% составлял водород. Действительно многочисленные наблюдения показали, что первое поколение звезд во Вселенной имело именно такой процентный состав.

Ядра атомов более тяжелых элементов появились во Вселенной много миллиардов лет позже в результате ядерных реакций в недрах звезд. Все активные процессы с участием элементарных частиц закончились, и наступил длительный период относительно спокойного расширения Вселенной.

Расширяющееся вещество представляло собой высокотемпературную, ионизированную плазму, не прозрачную для излучения фотонов, которое и определяло в тот момент силу давления.

В этой смеси плазмы и излучения имелись небольшие колебания плотности вещества - звуковые волны. По истечении 310 5 лет фотонной эры, за счет продолжающегося расширения Вселенной, плазма остыла до 410 3 К и превратилась в нейтральный газ в процессе захвата ядрами атомов свободных электронов. Этот газ стал прозрачным для фотонов, которые получили (открыты в 1965 г.) название реликтового излучения. В настоящее время энергия реликтовых фотонов уменьшилась, а температура фотонного излучения составляет всего 3  5 К. Реликтовое излучение представляет собой слабый радиошум, приходящий из космоса независимо от направления приемной антенны. Число фотонов реликтового излучения, находящихся в каждом 1 см 3 Вселенной, 500, а их плотность энергии 510  13 эрг/cм 3 . Из-за отсутствия давления излучения упругость нейтрального газа резко упала и стало возможным проявление гравитационной неустойчивости, которая привела к образованию достаточно больших по размеру сгущений газа. Вследствие уплотнения звуковых колебаний при распространении их в этих комках газа, силы тяготения начинают увеличиваться, что и приводит к образованию массивных облаков, эволюционирующих в дальнейшем в сверхскопления галактик, скопления галактик и галактики.

Все что наблюдается сегодня в космосе  проявление космологической сингулярности.

В настоящее время считается, что никакого предварительного сжатия перед космологической сингулярностью не было, она стала истоком времени, а сингулярность внутри черной дыры является концом ручейков реки времени. Поэтому в космологической сингулярности время и пространство так же распадаются на кванты. В связи с этим теряет смысл сам вопрос, а что было еще раньше? Можно только отметить, что вблизи сингулярности в масштабах квантов времени и пространства, существовала "пена" этих квантов, т.е. наблюдались квантовые флуктуации пространства и времени. В это время рождаются и тут же исчезают небольшие "виртуальные" замкнутые миры и виртуальные черные, и белые дыры.

Столь малые размеры при больших энергиях кипящей "пены", обусловили возможность существования не трех, а более измерений. Однако эти дополнительные измерения остаются скрученными и не реализуются, а остаются только три пространственных измерения, которые при расширении вещества приводят к современному состоянию Вселенной.

Следовательно, время в сингулярности в корне меняет свои квантовые свойства и начало расширения Вселенной является истоком нашего непрерывного потока времени, которое течет в одном направлении: от прошлого к будущему. Известно, что космологическая сингулярность произошла 15  20 млрд. лет назад. За это время, свет вышедший из какого-либо источника даже в момент начала расширения, успеет пройти конечное расстояние во Вселенной 1520 млрд. световых лет или около 610 15 пк. Поэтому точки пространства Вселенной, лежащие от нас на таких расстояниях, называют горизонтом видимости. Те области пространства, которые лежат за горизонтом видимости, сегодня принципиально не наблюдаемы, а вблизи горизонта видимости мы можем наблюдать вещество из далекого прошлого.

Из-за эффекта Доплера красное смещение света неограниченно нарастает, когда излучающий объект приближается к горизонту видимости. А на самом горизонте - оно бесконечно, поэтому мы можем видеть лишь конечное число звезд и галактик во Вселенной. В связи с этим решается парадокс классической космологии: фотометрический, который заключается в следующем. Так как Вселенная бесконечна, она заполнена бесконечным числом звезд и луч зрения рано или поздно встретит светящуюся звезду. В этом случае все небо должно сиять как поверхность Солнца или поверхность других звезд. В действительности из-за наличия горизонта видимости мы видим конечное число звезд, которые редко разбросаны в пространстве. Наше ночное небо представляется темным: в нем видны хаотично разбросанные светящиеся точки звезд. Подтверждением горячего начала возникновения нашей Вселенной являются результаты наблюдений за объектами космического пространства. К ним относятся, например, наличие реликтового излучения, наличие 25  30% гелия в составе до звездного вещества ранней Вселенной.

Мы обращаемся к рассмотрению важнейшего вопроса космологии - вопроса о начале космологического расширения, вопроса о сингулярности. Обобщающий итог изложенного в предыдущих разделах состоит в том, что Вселенная расширяется изотропно и однородно, начиная, по крайней мере, с момента, когда выполнялось равенство и с большой степенью вероятности описывалась моделью Фридмана еще гораздо раньше, начиная с эпохи протекания синтеза химических элементов, т. е. с первых секунд расширения и с плотностей порядка

Что было еще раньше? Расширялась ли Вселенная по Фридману, начиная с сингулярности (или, по крайней мере, с «планковского» момента или ранняя эпоха была существенно не фридмановской? Проходило ли вещество Вселенной через бесконечно большую плотность (или, по крайней мере, через «планковскую» плотность или же сжатие Вселенной в еще более раннюю эпоху сменилось расширением при конечной плотности [см., например, Альвен (1971)]?

Согласно модели Фридмана, расширение Вселенной начиналось от сингулярности. Начиная с 30-х годов, на протяжении десятилетий перед космологией стоял не является ли наличие сингулярности в начале расширения специальным свойством модели Фридмана (и других достаточно симметричных моделей), не исчезнет ли сингулярность при введении небольших пекулярных скоростей движения материи или вращения?

Аналогия с механической задачей о расширении шара в теории Ньютона подкрепляла такие предположения. Действительно, если рассматривать в теории Ньютона разлет тяготеющих частиц, одновременно вылетающих по радиусам из одной точки, то расширение начинается от сингулярности. Однако при наличии небольших пекулярных скоростей точки пролетают друг мимо друга вблизи Центра, плотность частиц всегда конечна и сингулярности не

возникают. Может быть, аналогичная ситуация возможна и в космологической задаче теории Эйнштейна?

Здесь существенно отметить одно обстоятельство, которое подчеркивается Лифшицем и Халатниковым (1963а, б). Если сингулярности в прошлом не было и наблюдаемому расширению Вселенной в прошлом предшествовало сжатие, то космологическая модель, описывающая прохождение вещества через максимум плотности и последующее расширение, должна быть устойчивой, т. е. относиться к «общему решению» по терминологии Лифшица и Халатникова. Иначе говоря, пусть есть какая-то модель без сингулярности, описывающая сжатие вещества до конечной плотности (без сингулярности), а затем его расширение, и пусть малое изменение параметров модели на фазе сжатия приводит к возникновению сингулярности. Тогда, очевидно, эта модель не может осуществляться в действительности, так как всегда найдутся случайные флуктуации, уводящие модель от решения без сингулярности. Таким образом, решение без сингулярности должно быть не исключительным, не вырожденным, а общим, чтобы претендовать на описание реальной Вселенной.

Однако если расширение начинается от сингулярности, то требование общности решения вблизи сингулярности уже не обязательно. Действительно, в этом случае начальные условия, определяющие решение, задаются какими-то неизвестными процессами при огромных кривизнах пространства-времени, т. е. в условиях, не описываемых современной теорией. Возможно, процессы в этом случае приводят к специальным начальным условиям расширения Вселенной, например к почти полной однородности и изотропии [см. Пиблс (1971а)]. Поэтому, если бы даже удалось доказать, что общее решение не содержит сингулярности, то это еще не означало бы, что расширение начиналось не от сингулярности.

Итак, перед космологией стояло два разных вопроса: 1) имеется ли общее (в смысле «устойчивое») космологическое решение без сингулярности? и 2) была ли сингулярность в прошлом в условиях, имеющих место в реальной Вселенной?

В конце 60-х годов был дан положительный ответ на второй вопрос (Пенроуз, Хоукинг, Героч). Было доказано, что расширение Вселенной начиналось с сингулярности (если, конечно, справедлива ОТО, но само изменение ОТО, если это связано с большой кривизной, требует «почти» сингулярности), однако, как именно протекало расширение вблизи сингулярности - по Фридману или более сложным образом, - установлено не было. После этих работ острота первого вопроса для космологии отпала. Действительно, структура решения вблизи сингулярности не обязательно соответствует общему решению, и возникает задача: каким-либо способом

установить истинный характер начала расширения реальной Вселенной.

В 1972 г. после длительной работы Белинский, Лифшиц, Халатников построили общее (устойчивое) решение с сингулярностью, т. е. дали положительный ответ на первый вопрос.

По своим свойствам общее решение оказалось качественно таким же, как решение вблизи сингулярности для модели «перемешанного» мира (см. §§ 4 и 5 гл. 21).

При дальнейшем изложении мы остановимся на доказательстве наличия сингулярности в прошлом во Вселенной и на физических процессах вблизи самой сингулярности. Можно надеяться, что в будущем анализ этих процессов и следствий из них позволит установить истинный характер расширения Вселенной на самых ранних стадиях, при плотностях, существенно превышающих ядерную.

Все вышерассмотренные заключения следуют из теории, пока не учитываются квантовые явления, протекающие в черной дыре.Допустим, что наблюдатель находится на поверхности звезды, испытывающей гравитационный коллапс. При приближении к источнику сильного гравитационного поля возникают приливные гравитационные силы, которые испытывает любое тело, имеющее конечные размеры. Это происходит из-за того, что сильные поля тяготения всегда неоднородны по составу и поэтому на различные точки таких тел действуют неодинаковые силы тяготения.

В процессе падения противоборствующие силы давления вещества звезды уже не оказывают никакого сопротивления нарастающей силе тяготения, поэтому поверхность звезды достигнет гравитационного радиуса, пересечет его и будет неудержимо продолжать сжиматься дальше.

Так как процесс сжатия остановиться не может, то за короткий промежуток времени (по часам на поверхности звезды) звезда сожмется в точку, а плотность вещества станет бесконечной, т.е. звезда достигает сингулярного состояния.

При приближении к сингулярному состоянию приливные гравитационные силы также стремятся к бесконечности. Это значит, что любое тело будет разорвано приливными силами. Если тело находится под горизонтом, то избежать сингулярности невозможно.

Для черной дыры, например, с массой в десять масс Солнца время падения в сингулярность составляет всего одну стотысячную долю секунды. Любые попытки вырваться из черной дыры приведут к уменьшению промежутка времени вхождения в сингулярное состояние. Чем меньше масса и размер черной дыры, тем больше приливные силы на ее горизонте.

Например, для черной дыры с массой в тысячу масс Солнца приливные силы соответствуют давлению 100 атм. В окрестности сингулярного состояния огромные приливные силы приводят к изменению физических свойств.

Если переходить из внешнего пространства через поверхность горизонта внутрь черной дыры, то в формулах, описывающих четырехмерное пространство-время, координата времени заменяется радиальной пространственной координатой , т.е. время превращается в радиальное пространственное расстояние, а это расстояние и есть время.

Расстояние от горизонта до центра черной дыры, конечно, значит, и промежуток времени, в течение которого могут существовать тела внутри черной дыры, конечен. Например, для черной дыры с массой в 10 масс Солнца он составляет t »10 - 4 с. Внутри черной дыры к сингулярности сходятся все стрелы времени, и любое тело будет разрушено, а пространство и время распадаются на кванты.

Так, квант времени характеризуется величиной t pl »10 - 44 с, а планковская длина кванта pl »10 - 33 см.

Следовательно, непрерывный поток времени в сингулярности состоит из квантов времени, подобно тому, как поток воды в струе при ее прохождении через сито разбивается на мельчайшие капельки. В связи с этим не имеет смысла спрашивать, что будет потом.

Понятия "раньше" и "позже" полностью теряют смысл: квант времени разделить на еще меньшие части принципиально невозможно, как нельзя, например, разделить на части фотон.

При переходе к квантовым процессам все в большей степени проявляется связь энергии и времени.

Однако в дальнейшем при описании процессов не обойтись без понятия физического вакуума и его квантовых свойств.

Согласно современным представлениям вакуум не является пустотой, а представляет собой "море" всевозможных виртуальных частиц и античастиц, которые не проявляются как реальные частицы.

Этот вакуум "кипит", непрерывно порождая на короткое время пары виртуальных частиц и античастиц, которые мгновенно исчезают. В реальные частицы и античастицы они превратиться не могут.

В соответствии с соотношением неопределенностей Гейзенберга , произведение времени жизни Dt виртуальной пары частиц на их энергию DW порядка постоянной Планка h.

Если же на физический вакуум наложить какое-либо сильное поле (например, электрическое, магнитное и т.д.), то под воздействием его энергии некоторые виртуальные частицы могут стать реальными, т.е. в сильном поле происходит рождение реальных частиц из физического вакуума за счет энергии этого поля.

Например, в сильном электрическом поле из вакуума рождаются электроны и позитроны. При изучении свойств физического вакуума около вращающейся черной дыры теоретически доказано, что должно происходить рождение квантов излучения за счет энергии вихревого поля тяготения.

Так как виртуальные частицы и античастицы рождаются в вакууме на некотором расстоянии друг от друга, то в случае наличия вихревого поля тяготения черной дыры частица может родиться вне горизонта, а ее античастица под горизонтом. Это означает, что частица может улететь в космическое пространство, античастица же упадет в черную дыру.

Следовательно, они уже никогда не могут вновь соединиться и аннигилировать. Поэтому в пространстве возникнет поток частиц, излученный черной дырой, который уносит с собой часть ее энергии. Это приведет к уменьшению массы и размеров черной дыры. Такой процесс излучения подобен тому, когда поверхность тела нагрета до определенной температуры.

Так, для черной дыры в 10 масс Солнца температура составляет »10 - 8 К. Чем, больше масса черной дыры, тем меньше ее температура, и, наоборот, чем меньше масса, тем выше температура. Так, черная дыра с массой m »10 12 кг и размером в атомное ядро будет иметь мощность квантового испарения »10 10 Вт на протяжении »10 10 лет при температуре T»10 11 К. Когда масса черной дыры уменьшится до m»10 6 кг, а температура достигнет Т»10 15 К, процесс излучения приведет к взрыву и за 0,1 с выделится количество энергии, сравнимой со взрывом 10 6 мегатонных водородных бомб.

Загрузка...
Top